Metamath Proof Explorer


Theorem mdandyvrx6

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx6.1 φ ζ
mdandyvrx6.2 ψ σ
mdandyvrx6.3 χ φ
mdandyvrx6.4 θ ψ
mdandyvrx6.5 τ ψ
mdandyvrx6.6 η φ
Assertion mdandyvrx6 χ ζ θ σ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx6.1 φ ζ
2 mdandyvrx6.2 ψ σ
3 mdandyvrx6.3 χ φ
4 mdandyvrx6.4 θ ψ
5 mdandyvrx6.5 τ ψ
6 mdandyvrx6.6 η φ
7 1 3 axorbciffatcxorb χ ζ
8 2 4 axorbciffatcxorb θ σ
9 7 8 pm3.2i χ ζ θ σ
10 2 5 axorbciffatcxorb τ σ
11 9 10 pm3.2i χ ζ θ σ τ σ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ ζ θ σ τ σ η ζ