Metamath Proof Explorer


Theorem mdandyvrx7

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx7.1 φ ζ
mdandyvrx7.2 ψ σ
mdandyvrx7.3 χ ψ
mdandyvrx7.4 θ ψ
mdandyvrx7.5 τ ψ
mdandyvrx7.6 η φ
Assertion mdandyvrx7 χ σ θ σ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx7.1 φ ζ
2 mdandyvrx7.2 ψ σ
3 mdandyvrx7.3 χ ψ
4 mdandyvrx7.4 θ ψ
5 mdandyvrx7.5 τ ψ
6 mdandyvrx7.6 η φ
7 2 3 axorbciffatcxorb χ σ
8 2 4 axorbciffatcxorb θ σ
9 7 8 pm3.2i χ σ θ σ
10 2 5 axorbciffatcxorb τ σ
11 9 10 pm3.2i χ σ θ σ τ σ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ σ θ σ τ σ η ζ