Metamath Proof Explorer


Theorem mdandyvrx8

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx8.1 φ ζ
mdandyvrx8.2 ψ σ
mdandyvrx8.3 χ φ
mdandyvrx8.4 θ φ
mdandyvrx8.5 τ φ
mdandyvrx8.6 η ψ
Assertion mdandyvrx8 χ ζ θ ζ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx8.1 φ ζ
2 mdandyvrx8.2 ψ σ
3 mdandyvrx8.3 χ φ
4 mdandyvrx8.4 θ φ
5 mdandyvrx8.5 τ φ
6 mdandyvrx8.6 η ψ
7 2 1 3 4 5 6 mdandyvrx7 χ ζ θ ζ τ ζ η σ