Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx8
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx8.1
⊢ φ ⊻ ζ
mdandyvrx8.2
⊢ ψ ⊻ σ
mdandyvrx8.3
⊢ χ ↔ φ
mdandyvrx8.4
⊢ θ ↔ φ
mdandyvrx8.5
⊢ τ ↔ φ
mdandyvrx8.6
⊢ η ↔ ψ
Assertion
mdandyvrx8
⊢ χ ⊻ ζ ∧ θ ⊻ ζ ∧ τ ⊻ ζ ∧ η ⊻ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx8.1
⊢ φ ⊻ ζ
2
mdandyvrx8.2
⊢ ψ ⊻ σ
3
mdandyvrx8.3
⊢ χ ↔ φ
4
mdandyvrx8.4
⊢ θ ↔ φ
5
mdandyvrx8.5
⊢ τ ↔ φ
6
mdandyvrx8.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvrx7
⊢ χ ⊻ ζ ∧ θ ⊻ ζ ∧ τ ⊻ ζ ∧ η ⊻ σ