Metamath Proof Explorer


Theorem mdandyvrx9

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx9.1 φ ζ
mdandyvrx9.2 ψ σ
mdandyvrx9.3 χ ψ
mdandyvrx9.4 θ φ
mdandyvrx9.5 τ φ
mdandyvrx9.6 η ψ
Assertion mdandyvrx9 χ σ θ ζ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx9.1 φ ζ
2 mdandyvrx9.2 ψ σ
3 mdandyvrx9.3 χ ψ
4 mdandyvrx9.4 θ φ
5 mdandyvrx9.5 τ φ
6 mdandyvrx9.6 η ψ
7 2 1 3 4 5 6 mdandyvrx6 χ σ θ ζ τ ζ η σ