Metamath Proof Explorer


Theorem mdbr

Description: Binary relation expressing <. A , B >. is a modular pair. Definition 1.1 of MaedaMaeda p. 1. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdbr A C B C A 𝑀 B x C x B x A B = x A B

Proof

Step Hyp Ref Expression
1 eleq1 y = A y C A C
2 1 anbi1d y = A y C z C A C z C
3 oveq2 y = A x y = x A
4 3 ineq1d y = A x y z = x A z
5 ineq1 y = A y z = A z
6 5 oveq2d y = A x y z = x A z
7 4 6 eqeq12d y = A x y z = x y z x A z = x A z
8 7 imbi2d y = A x z x y z = x y z x z x A z = x A z
9 8 ralbidv y = A x C x z x y z = x y z x C x z x A z = x A z
10 2 9 anbi12d y = A y C z C x C x z x y z = x y z A C z C x C x z x A z = x A z
11 eleq1 z = B z C B C
12 11 anbi2d z = B A C z C A C B C
13 sseq2 z = B x z x B
14 ineq2 z = B x A z = x A B
15 ineq2 z = B A z = A B
16 15 oveq2d z = B x A z = x A B
17 14 16 eqeq12d z = B x A z = x A z x A B = x A B
18 13 17 imbi12d z = B x z x A z = x A z x B x A B = x A B
19 18 ralbidv z = B x C x z x A z = x A z x C x B x A B = x A B
20 12 19 anbi12d z = B A C z C x C x z x A z = x A z A C B C x C x B x A B = x A B
21 df-md 𝑀 = y z | y C z C x C x z x y z = x y z
22 10 20 21 brabg A C B C A 𝑀 B A C B C x C x B x A B = x A B
23 22 bianabs A C B C A 𝑀 B x C x B x A B = x A B