Metamath Proof Explorer


Theorem mddmd

Description: The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mddmd A C B C A 𝑀 B A 𝑀 * B

Proof

Step Hyp Ref Expression
1 choccl A C A C
2 choccl B C B C
3 dmdmd A C B C A 𝑀 * B A 𝑀 B
4 1 2 3 syl2an A C B C A 𝑀 * B A 𝑀 B
5 ococ A C A = A
6 ococ B C B = B
7 5 6 breqan12d A C B C A 𝑀 B A 𝑀 B
8 4 7 bitr2d A C B C A 𝑀 B A 𝑀 * B