Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
|
2 |
|
mdegaddle.d |
|
3 |
|
mdegaddle.i |
|
4 |
|
mdegaddle.r |
|
5 |
|
mdegaddle.b |
|
6 |
|
mdegaddle.p |
|
7 |
|
mdegaddle.f |
|
8 |
|
mdegaddle.g |
|
9 |
|
eqid |
|
10 |
1 5 9 6 7 8
|
mpladd |
|
11 |
10
|
fveq1d |
|
12 |
11
|
adantr |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
1 13 5 14 7
|
mplelf |
|
16 |
15
|
ffnd |
|
17 |
16
|
adantr |
|
18 |
1 13 5 14 8
|
mplelf |
|
19 |
18
|
ffnd |
|
20 |
19
|
adantr |
|
21 |
|
ovex |
|
22 |
21
|
rabex |
|
23 |
22
|
a1i |
|
24 |
|
simpr |
|
25 |
|
fnfvof |
|
26 |
17 20 23 24 25
|
syl22anc |
|
27 |
12 26
|
eqtrd |
|
28 |
27
|
adantrr |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
7
|
adantr |
|
32 |
|
simprl |
|
33 |
2 1 5
|
mdegxrcl |
|
34 |
7 33
|
syl |
|
35 |
34
|
adantr |
|
36 |
2 1 5
|
mdegxrcl |
|
37 |
8 36
|
syl |
|
38 |
37 34
|
ifcld |
|
39 |
38
|
adantr |
|
40 |
|
nn0ssre |
|
41 |
|
ressxr |
|
42 |
40 41
|
sstri |
|
43 |
14 30
|
tdeglem1 |
|
44 |
43
|
a1i |
|
45 |
44
|
ffvelrnda |
|
46 |
42 45
|
sselid |
|
47 |
35 39 46
|
3jca |
|
48 |
47
|
adantrr |
|
49 |
|
xrmax1 |
|
50 |
34 37 49
|
syl2anc |
|
51 |
50
|
adantr |
|
52 |
|
simprr |
|
53 |
51 52
|
jca |
|
54 |
|
xrlelttr |
|
55 |
48 53 54
|
sylc |
|
56 |
2 1 5 29 14 30 31 32 55
|
mdeglt |
|
57 |
8
|
adantr |
|
58 |
37
|
adantr |
|
59 |
58 39 46
|
3jca |
|
60 |
59
|
adantrr |
|
61 |
|
xrmax2 |
|
62 |
34 37 61
|
syl2anc |
|
63 |
62
|
adantr |
|
64 |
63 52
|
jca |
|
65 |
|
xrlelttr |
|
66 |
60 64 65
|
sylc |
|
67 |
2 1 5 29 14 30 57 32 66
|
mdeglt |
|
68 |
56 67
|
oveq12d |
|
69 |
|
ringgrp |
|
70 |
4 69
|
syl |
|
71 |
13 29
|
ring0cl |
|
72 |
4 71
|
syl |
|
73 |
13 9 29
|
grplid |
|
74 |
70 72 73
|
syl2anc |
|
75 |
74
|
adantr |
|
76 |
68 75
|
eqtrd |
|
77 |
28 76
|
eqtrd |
|
78 |
77
|
expr |
|
79 |
78
|
ralrimiva |
|
80 |
1
|
mplring |
|
81 |
3 4 80
|
syl2anc |
|
82 |
5 6
|
ringacl |
|
83 |
81 7 8 82
|
syl3anc |
|
84 |
2 1 5 29 14 30
|
mdegleb |
|
85 |
83 38 84
|
syl2anc |
|
86 |
79 85
|
mpbird |
|