Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdegaddle.y | |
|
mdegaddle.d | |
||
mdegaddle.i | |
||
mdegaddle.r | |
||
mdegle0.b | |
||
mdegle0.a | |
||
mdegle0.f | |
||
Assertion | mdegle0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | |
|
2 | mdegaddle.d | |
|
3 | mdegaddle.i | |
|
4 | mdegaddle.r | |
|
5 | mdegle0.b | |
|
6 | mdegle0.a | |
|
7 | mdegle0.f | |
|
8 | 0xr | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 2 1 5 9 10 11 | mdegleb | |
13 | 7 8 12 | sylancl | |
14 | 10 11 | tdeglem1 | |
15 | 14 | a1i | |
16 | 15 | ffvelrnda | |
17 | nn0re | |
|
18 | nn0ge0 | |
|
19 | 17 18 | jca | |
20 | ne0gt0 | |
|
21 | 16 19 20 | 3syl | |
22 | 10 11 | tdeglem4 | |
23 | 22 | adantl | |
24 | 23 | necon3abid | |
25 | 21 24 | bitr3d | |
26 | 25 | imbi1d | |
27 | eqeq2 | |
|
28 | 27 | bibi1d | |
29 | eqeq2 | |
|
30 | 29 | bibi1d | |
31 | fveq2 | |
|
32 | pm2.24 | |
|
33 | 31 32 | 2thd | |
34 | 33 | adantl | |
35 | biimt | |
|
36 | 35 | adantl | |
37 | 28 30 34 36 | ifbothda | |
38 | 37 | adantr | |
39 | 26 38 | bitr4d | |
40 | 39 | ralbidva | |
41 | eqid | |
|
42 | 1 41 5 10 7 | mplelf | |
43 | 42 | feqmptd | |
44 | 10 | psrbag0 | |
45 | 3 44 | syl | |
46 | 42 45 | ffvelrnd | |
47 | 1 10 9 41 6 3 4 46 | mplascl | |
48 | 43 47 | eqeq12d | |
49 | fvex | |
|
50 | 49 | rgenw | |
51 | mpteqb | |
|
52 | 50 51 | mp1i | |
53 | 48 52 | bitrd | |
54 | 40 53 | bitr4d | |
55 | 13 54 | bitrd | |