Step |
Hyp |
Ref |
Expression |
1 |
|
mdegaddle.y |
|
2 |
|
mdegaddle.d |
|
3 |
|
mdegaddle.i |
|
4 |
|
mdegaddle.r |
|
5 |
|
mdegle0.b |
|
6 |
|
mdegle0.a |
|
7 |
|
mdegle0.f |
|
8 |
|
0xr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
2 1 5 9 10 11
|
mdegleb |
|
13 |
7 8 12
|
sylancl |
|
14 |
10 11
|
tdeglem1 |
|
15 |
14
|
a1i |
|
16 |
15
|
ffvelrnda |
|
17 |
|
nn0re |
|
18 |
|
nn0ge0 |
|
19 |
17 18
|
jca |
|
20 |
|
ne0gt0 |
|
21 |
16 19 20
|
3syl |
|
22 |
10 11
|
tdeglem4 |
|
23 |
22
|
adantl |
|
24 |
23
|
necon3abid |
|
25 |
21 24
|
bitr3d |
|
26 |
25
|
imbi1d |
|
27 |
|
eqeq2 |
|
28 |
27
|
bibi1d |
|
29 |
|
eqeq2 |
|
30 |
29
|
bibi1d |
|
31 |
|
fveq2 |
|
32 |
|
pm2.24 |
|
33 |
31 32
|
2thd |
|
34 |
33
|
adantl |
|
35 |
|
biimt |
|
36 |
35
|
adantl |
|
37 |
28 30 34 36
|
ifbothda |
|
38 |
37
|
adantr |
|
39 |
26 38
|
bitr4d |
|
40 |
39
|
ralbidva |
|
41 |
|
eqid |
|
42 |
1 41 5 10 7
|
mplelf |
|
43 |
42
|
feqmptd |
|
44 |
10
|
psrbag0 |
|
45 |
3 44
|
syl |
|
46 |
42 45
|
ffvelrnd |
|
47 |
1 10 9 41 6 3 4 46
|
mplascl |
|
48 |
43 47
|
eqeq12d |
|
49 |
|
fvex |
|
50 |
49
|
rgenw |
|
51 |
|
mpteqb |
|
52 |
50 51
|
mp1i |
|
53 |
48 52
|
bitrd |
|
54 |
40 53
|
bitr4d |
|
55 |
13 54
|
bitrd |
|