Metamath Proof Explorer


Theorem mdegle0

Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y=ImPolyR
mdegaddle.d D=ImDegR
mdegaddle.i φIV
mdegaddle.r φRRing
mdegle0.b B=BaseY
mdegle0.a A=algScY
mdegle0.f φFB
Assertion mdegle0 φDF0F=AFI×0

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y=ImPolyR
2 mdegaddle.d D=ImDegR
3 mdegaddle.i φIV
4 mdegaddle.r φRRing
5 mdegle0.b B=BaseY
6 mdegle0.a A=algScY
7 mdegle0.f φFB
8 0xr 0*
9 eqid 0R=0R
10 eqid a0I|a-1Fin=a0I|a-1Fin
11 eqid ba0I|a-1Finfldb=ba0I|a-1Finfldb
12 2 1 5 9 10 11 mdegleb FB0*DF0xa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0R
13 7 8 12 sylancl φDF0xa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0R
14 10 11 tdeglem1 ba0I|a-1Finfldb:a0I|a-1Fin0
15 14 a1i φba0I|a-1Finfldb:a0I|a-1Fin0
16 15 ffvelrnda φxa0I|a-1Finba0I|a-1Finfldbx0
17 nn0re ba0I|a-1Finfldbx0ba0I|a-1Finfldbx
18 nn0ge0 ba0I|a-1Finfldbx00ba0I|a-1Finfldbx
19 17 18 jca ba0I|a-1Finfldbx0ba0I|a-1Finfldbx0ba0I|a-1Finfldbx
20 ne0gt0 ba0I|a-1Finfldbx0ba0I|a-1Finfldbxba0I|a-1Finfldbx00<ba0I|a-1Finfldbx
21 16 19 20 3syl φxa0I|a-1Finba0I|a-1Finfldbx00<ba0I|a-1Finfldbx
22 10 11 tdeglem4 xa0I|a-1Finba0I|a-1Finfldbx=0x=I×0
23 22 adantl φxa0I|a-1Finba0I|a-1Finfldbx=0x=I×0
24 23 necon3abid φxa0I|a-1Finba0I|a-1Finfldbx0¬x=I×0
25 21 24 bitr3d φxa0I|a-1Fin0<ba0I|a-1Finfldbx¬x=I×0
26 25 imbi1d φxa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0R¬x=I×0Fx=0R
27 eqeq2 FI×0=ifx=I×0FI×00RFx=FI×0Fx=ifx=I×0FI×00R
28 27 bibi1d FI×0=ifx=I×0FI×00RFx=FI×0¬x=I×0Fx=0RFx=ifx=I×0FI×00R¬x=I×0Fx=0R
29 eqeq2 0R=ifx=I×0FI×00RFx=0RFx=ifx=I×0FI×00R
30 29 bibi1d 0R=ifx=I×0FI×00RFx=0R¬x=I×0Fx=0RFx=ifx=I×0FI×00R¬x=I×0Fx=0R
31 fveq2 x=I×0Fx=FI×0
32 pm2.24 x=I×0¬x=I×0Fx=0R
33 31 32 2thd x=I×0Fx=FI×0¬x=I×0Fx=0R
34 33 adantl φx=I×0Fx=FI×0¬x=I×0Fx=0R
35 biimt ¬x=I×0Fx=0R¬x=I×0Fx=0R
36 35 adantl φ¬x=I×0Fx=0R¬x=I×0Fx=0R
37 28 30 34 36 ifbothda φFx=ifx=I×0FI×00R¬x=I×0Fx=0R
38 37 adantr φxa0I|a-1FinFx=ifx=I×0FI×00R¬x=I×0Fx=0R
39 26 38 bitr4d φxa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0RFx=ifx=I×0FI×00R
40 39 ralbidva φxa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0Rxa0I|a-1FinFx=ifx=I×0FI×00R
41 eqid BaseR=BaseR
42 1 41 5 10 7 mplelf φF:a0I|a-1FinBaseR
43 42 feqmptd φF=xa0I|a-1FinFx
44 10 psrbag0 IVI×0a0I|a-1Fin
45 3 44 syl φI×0a0I|a-1Fin
46 42 45 ffvelrnd φFI×0BaseR
47 1 10 9 41 6 3 4 46 mplascl φAFI×0=xa0I|a-1Finifx=I×0FI×00R
48 43 47 eqeq12d φF=AFI×0xa0I|a-1FinFx=xa0I|a-1Finifx=I×0FI×00R
49 fvex FxV
50 49 rgenw xa0I|a-1FinFxV
51 mpteqb xa0I|a-1FinFxVxa0I|a-1FinFx=xa0I|a-1Finifx=I×0FI×00Rxa0I|a-1FinFx=ifx=I×0FI×00R
52 50 51 mp1i φxa0I|a-1FinFx=xa0I|a-1Finifx=I×0FI×00Rxa0I|a-1FinFx=ifx=I×0FI×00R
53 48 52 bitrd φF=AFI×0xa0I|a-1FinFx=ifx=I×0FI×00R
54 40 53 bitr4d φxa0I|a-1Fin0<ba0I|a-1FinfldbxFx=0RF=AFI×0
55 13 54 bitrd φDF0F=AFI×0