Metamath Proof Explorer


Theorem mdegleb

Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses mdegval.d D = I mDeg R
mdegval.p P = I mPoly R
mdegval.b B = Base P
mdegval.z 0 ˙ = 0 R
mdegval.a A = m 0 I | m -1 Fin
mdegval.h H = h A fld h
Assertion mdegleb F B G * D F G x A G < H x F x = 0 ˙

Proof

Step Hyp Ref Expression
1 mdegval.d D = I mDeg R
2 mdegval.p P = I mPoly R
3 mdegval.b B = Base P
4 mdegval.z 0 ˙ = 0 R
5 mdegval.a A = m 0 I | m -1 Fin
6 mdegval.h H = h A fld h
7 1 2 3 4 5 6 mdegval F B D F = sup H F supp 0 ˙ * <
8 7 adantr F B G * D F = sup H F supp 0 ˙ * <
9 8 breq1d F B G * D F G sup H F supp 0 ˙ * < G
10 imassrn H F supp 0 ˙ ran H
11 5 6 tdeglem1 H : A 0
12 11 a1i F B G * H : A 0
13 12 frnd F B G * ran H 0
14 nn0ssre 0
15 ressxr *
16 14 15 sstri 0 *
17 13 16 sstrdi F B G * ran H *
18 10 17 sstrid F B G * H F supp 0 ˙ *
19 supxrleub H F supp 0 ˙ * G * sup H F supp 0 ˙ * < G y H F supp 0 ˙ y G
20 18 19 sylancom F B G * sup H F supp 0 ˙ * < G y H F supp 0 ˙ y G
21 12 ffnd F B G * H Fn A
22 suppssdm F supp 0 ˙ dom F
23 eqid Base R = Base R
24 simpl F B G * F B
25 2 23 3 5 24 mplelf F B G * F : A Base R
26 22 25 fssdm F B G * F supp 0 ˙ A
27 breq1 y = H x y G H x G
28 27 ralima H Fn A F supp 0 ˙ A y H F supp 0 ˙ y G x supp 0 ˙ F H x G
29 21 26 28 syl2anc F B G * y H F supp 0 ˙ y G x supp 0 ˙ F H x G
30 25 ffnd F B G * F Fn A
31 4 fvexi 0 ˙ V
32 31 a1i F B G * 0 ˙ V
33 elsuppfng F Fn A F B 0 ˙ V x supp 0 ˙ F x A F x 0 ˙
34 30 24 32 33 syl3anc F B G * x supp 0 ˙ F x A F x 0 ˙
35 fvex F x V
36 35 biantrur F x 0 ˙ F x V F x 0 ˙
37 eldifsn F x V 0 ˙ F x V F x 0 ˙
38 36 37 bitr4i F x 0 ˙ F x V 0 ˙
39 38 anbi2i x A F x 0 ˙ x A F x V 0 ˙
40 34 39 bitrdi F B G * x supp 0 ˙ F x A F x V 0 ˙
41 40 imbi1d F B G * x supp 0 ˙ F H x G x A F x V 0 ˙ H x G
42 impexp x A F x V 0 ˙ H x G x A F x V 0 ˙ H x G
43 con34b F x V 0 ˙ H x G ¬ H x G ¬ F x V 0 ˙
44 simplr F B G * x A G *
45 12 ffvelrnda F B G * x A H x 0
46 16 45 sselid F B G * x A H x *
47 xrltnle G * H x * G < H x ¬ H x G
48 44 46 47 syl2anc F B G * x A G < H x ¬ H x G
49 48 bicomd F B G * x A ¬ H x G G < H x
50 ianor ¬ F x V F x 0 ˙ ¬ F x V ¬ F x 0 ˙
51 50 37 xchnxbir ¬ F x V 0 ˙ ¬ F x V ¬ F x 0 ˙
52 orcom ¬ F x V ¬ F x 0 ˙ ¬ F x 0 ˙ ¬ F x V
53 35 notnoti ¬ ¬ F x V
54 53 biorfi ¬ F x 0 ˙ ¬ F x 0 ˙ ¬ F x V
55 nne ¬ F x 0 ˙ F x = 0 ˙
56 52 54 55 3bitr2i ¬ F x V ¬ F x 0 ˙ F x = 0 ˙
57 56 a1i F B G * x A ¬ F x V ¬ F x 0 ˙ F x = 0 ˙
58 51 57 syl5bb F B G * x A ¬ F x V 0 ˙ F x = 0 ˙
59 49 58 imbi12d F B G * x A ¬ H x G ¬ F x V 0 ˙ G < H x F x = 0 ˙
60 43 59 syl5bb F B G * x A F x V 0 ˙ H x G G < H x F x = 0 ˙
61 60 pm5.74da F B G * x A F x V 0 ˙ H x G x A G < H x F x = 0 ˙
62 42 61 syl5bb F B G * x A F x V 0 ˙ H x G x A G < H x F x = 0 ˙
63 41 62 bitrd F B G * x supp 0 ˙ F H x G x A G < H x F x = 0 ˙
64 63 ralbidv2 F B G * x supp 0 ˙ F H x G x A G < H x F x = 0 ˙
65 29 64 bitrd F B G * y H F supp 0 ˙ y G x A G < H x F x = 0 ˙
66 9 20 65 3bitrd F B G * D F G x A G < H x F x = 0 ˙