Metamath Proof Explorer


Theorem mdegmulle2

Description: The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y = I mPoly R
mdegaddle.d D = I mDeg R
mdegaddle.i φ I V
mdegaddle.r φ R Ring
mdegmulle2.b B = Base Y
mdegmulle2.t · ˙ = Y
mdegmulle2.f φ F B
mdegmulle2.g φ G B
mdegmulle2.j1 φ J 0
mdegmulle2.k1 φ K 0
mdegmulle2.j2 φ D F J
mdegmulle2.k2 φ D G K
Assertion mdegmulle2 φ D F · ˙ G J + K

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y = I mPoly R
2 mdegaddle.d D = I mDeg R
3 mdegaddle.i φ I V
4 mdegaddle.r φ R Ring
5 mdegmulle2.b B = Base Y
6 mdegmulle2.t · ˙ = Y
7 mdegmulle2.f φ F B
8 mdegmulle2.g φ G B
9 mdegmulle2.j1 φ J 0
10 mdegmulle2.k1 φ K 0
11 mdegmulle2.j2 φ D F J
12 mdegmulle2.k2 φ D G K
13 eqid a 0 I | a -1 Fin = a 0 I | a -1 Fin
14 eqid b a 0 I | a -1 Fin fld b = b a 0 I | a -1 Fin fld b
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mdegmullem φ D F · ˙ G J + K