Metamath Proof Explorer


Theorem mdegmullem

Description: Lemma for mdegmulle2 . (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y = I mPoly R
mdegaddle.d D = I mDeg R
mdegaddle.i φ I V
mdegaddle.r φ R Ring
mdegmulle2.b B = Base Y
mdegmulle2.t · ˙ = Y
mdegmulle2.f φ F B
mdegmulle2.g φ G B
mdegmulle2.j1 φ J 0
mdegmulle2.k1 φ K 0
mdegmulle2.j2 φ D F J
mdegmulle2.k2 φ D G K
mdegmullem.a A = a 0 I | a -1 Fin
mdegmullem.h H = b A fld b
Assertion mdegmullem φ D F · ˙ G J + K

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y = I mPoly R
2 mdegaddle.d D = I mDeg R
3 mdegaddle.i φ I V
4 mdegaddle.r φ R Ring
5 mdegmulle2.b B = Base Y
6 mdegmulle2.t · ˙ = Y
7 mdegmulle2.f φ F B
8 mdegmulle2.g φ G B
9 mdegmulle2.j1 φ J 0
10 mdegmulle2.k1 φ K 0
11 mdegmulle2.j2 φ D F J
12 mdegmulle2.k2 φ D G K
13 mdegmullem.a A = a 0 I | a -1 Fin
14 mdegmullem.h H = b A fld b
15 eqid R = R
16 1 5 15 6 13 7 8 mplmul φ F · ˙ G = c A R d e A | e f c F d R G c f d
17 16 fveq1d φ F · ˙ G x = c A R d e A | e f c F d R G c f d x
18 17 adantr φ x A J + K < H x F · ˙ G x = c A R d e A | e f c F d R G c f d x
19 breq2 c = x e f c e f x
20 19 rabbidv c = x e A | e f c = e A | e f x
21 fvoveq1 c = x G c f d = G x f d
22 21 oveq2d c = x F d R G c f d = F d R G x f d
23 20 22 mpteq12dv c = x d e A | e f c F d R G c f d = d e A | e f x F d R G x f d
24 23 oveq2d c = x R d e A | e f c F d R G c f d = R d e A | e f x F d R G x f d
25 eqid c A R d e A | e f c F d R G c f d = c A R d e A | e f c F d R G c f d
26 ovex R d e A | e f x F d R G x f d V
27 24 25 26 fvmpt x A c A R d e A | e f c F d R G c f d x = R d e A | e f x F d R G x f d
28 27 ad2antrl φ x A J + K < H x c A R d e A | e f c F d R G c f d x = R d e A | e f x F d R G x f d
29 eqid 0 R = 0 R
30 7 ad2antrr φ x A J + K < H x d e A | e f x J < H d F B
31 elrabi d e A | e f x d A
32 31 adantl φ x A J + K < H x d e A | e f x d A
33 32 adantrr φ x A J + K < H x d e A | e f x J < H d d A
34 2 1 5 mdegxrcl F B D F *
35 7 34 syl φ D F *
36 35 ad2antrr φ x A J + K < H x d e A | e f x D F *
37 nn0ssre 0
38 ressxr *
39 37 38 sstri 0 *
40 39 9 sselid φ J *
41 40 ad2antrr φ x A J + K < H x d e A | e f x J *
42 13 14 tdeglem1 H : A 0
43 42 a1i φ x A J + K < H x d e A | e f x H : A 0
44 43 32 ffvelrnd φ x A J + K < H x d e A | e f x H d 0
45 39 44 sselid φ x A J + K < H x d e A | e f x H d *
46 36 41 45 3jca φ x A J + K < H x d e A | e f x D F * J * H d *
47 46 adantrr φ x A J + K < H x d e A | e f x J < H d D F * J * H d *
48 11 ad2antrr φ x A J + K < H x d e A | e f x D F J
49 48 anim1i φ x A J + K < H x d e A | e f x J < H d D F J J < H d
50 49 anasss φ x A J + K < H x d e A | e f x J < H d D F J J < H d
51 xrlelttr D F * J * H d * D F J J < H d D F < H d
52 47 50 51 sylc φ x A J + K < H x d e A | e f x J < H d D F < H d
53 2 1 5 29 13 14 30 33 52 mdeglt φ x A J + K < H x d e A | e f x J < H d F d = 0 R
54 53 oveq1d φ x A J + K < H x d e A | e f x J < H d F d R G x f d = 0 R R G x f d
55 4 ad2antrr φ x A J + K < H x d e A | e f x R Ring
56 eqid Base R = Base R
57 1 56 5 13 8 mplelf φ G : A Base R
58 57 ad2antrr φ x A J + K < H x d e A | e f x G : A Base R
59 ssrab2 e A | e f x A
60 simplrl φ x A J + K < H x d e A | e f x x A
61 eqid e A | e f x = e A | e f x
62 13 61 psrbagconcl x A d e A | e f x x f d e A | e f x
63 60 62 sylancom φ x A J + K < H x d e A | e f x x f d e A | e f x
64 59 63 sselid φ x A J + K < H x d e A | e f x x f d A
65 58 64 ffvelrnd φ x A J + K < H x d e A | e f x G x f d Base R
66 56 15 29 ringlz R Ring G x f d Base R 0 R R G x f d = 0 R
67 55 65 66 syl2anc φ x A J + K < H x d e A | e f x 0 R R G x f d = 0 R
68 67 adantrr φ x A J + K < H x d e A | e f x J < H d 0 R R G x f d = 0 R
69 54 68 eqtrd φ x A J + K < H x d e A | e f x J < H d F d R G x f d = 0 R
70 69 anassrs φ x A J + K < H x d e A | e f x J < H d F d R G x f d = 0 R
71 8 ad2antrr φ x A J + K < H x d e A | e f x K < H x f d G B
72 64 adantrr φ x A J + K < H x d e A | e f x K < H x f d x f d A
73 2 1 5 mdegxrcl G B D G *
74 8 73 syl φ D G *
75 74 ad2antrr φ x A J + K < H x d e A | e f x D G *
76 39 10 sselid φ K *
77 76 ad2antrr φ x A J + K < H x d e A | e f x K *
78 43 64 ffvelrnd φ x A J + K < H x d e A | e f x H x f d 0
79 39 78 sselid φ x A J + K < H x d e A | e f x H x f d *
80 75 77 79 3jca φ x A J + K < H x d e A | e f x D G * K * H x f d *
81 80 adantrr φ x A J + K < H x d e A | e f x K < H x f d D G * K * H x f d *
82 12 ad2antrr φ x A J + K < H x d e A | e f x D G K
83 82 anim1i φ x A J + K < H x d e A | e f x K < H x f d D G K K < H x f d
84 83 anasss φ x A J + K < H x d e A | e f x K < H x f d D G K K < H x f d
85 xrlelttr D G * K * H x f d * D G K K < H x f d D G < H x f d
86 81 84 85 sylc φ x A J + K < H x d e A | e f x K < H x f d D G < H x f d
87 2 1 5 29 13 14 71 72 86 mdeglt φ x A J + K < H x d e A | e f x K < H x f d G x f d = 0 R
88 87 oveq2d φ x A J + K < H x d e A | e f x K < H x f d F d R G x f d = F d R 0 R
89 1 56 5 13 7 mplelf φ F : A Base R
90 89 ad2antrr φ x A J + K < H x d e A | e f x F : A Base R
91 90 32 ffvelrnd φ x A J + K < H x d e A | e f x F d Base R
92 56 15 29 ringrz R Ring F d Base R F d R 0 R = 0 R
93 55 91 92 syl2anc φ x A J + K < H x d e A | e f x F d R 0 R = 0 R
94 93 adantrr φ x A J + K < H x d e A | e f x K < H x f d F d R 0 R = 0 R
95 88 94 eqtrd φ x A J + K < H x d e A | e f x K < H x f d F d R G x f d = 0 R
96 95 anassrs φ x A J + K < H x d e A | e f x K < H x f d F d R G x f d = 0 R
97 simplrr φ x A J + K < H x d e A | e f x J + K < H x
98 44 nn0red φ x A J + K < H x d e A | e f x H d
99 78 nn0red φ x A J + K < H x d e A | e f x H x f d
100 9 ad2antrr φ x A J + K < H x d e A | e f x J 0
101 100 nn0red φ x A J + K < H x d e A | e f x J
102 10 ad2antrr φ x A J + K < H x d e A | e f x K 0
103 102 nn0red φ x A J + K < H x d e A | e f x K
104 le2add H d H x f d J K H d J H x f d K H d + H x f d J + K
105 98 99 101 103 104 syl22anc φ x A J + K < H x d e A | e f x H d J H x f d K H d + H x f d J + K
106 13 14 tdeglem3 d A x f d A H d + f x f d = H d + H x f d
107 32 64 106 syl2anc φ x A J + K < H x d e A | e f x H d + f x f d = H d + H x f d
108 3 ad2antrr φ x A J + K < H x d e A | e f x I V
109 13 psrbagf d A d : I 0
110 109 3ad2ant2 I V d A x A d : I 0
111 110 ffvelrnda I V d A x A b I d b 0
112 111 nn0cnd I V d A x A b I d b
113 13 psrbagf x A x : I 0
114 113 3ad2ant3 I V d A x A x : I 0
115 114 ffvelrnda I V d A x A b I x b 0
116 115 nn0cnd I V d A x A b I x b
117 112 116 pncan3d I V d A x A b I d b + x b - d b = x b
118 117 mpteq2dva I V d A x A b I d b + x b - d b = b I x b
119 simp1 I V d A x A I V
120 fvexd I V d A x A b I d b V
121 ovexd I V d A x A b I x b d b V
122 110 feqmptd I V d A x A d = b I d b
123 fvexd I V d A x A b I x b V
124 114 feqmptd I V d A x A x = b I x b
125 119 123 120 124 122 offval2 I V d A x A x f d = b I x b d b
126 119 120 121 122 125 offval2 I V d A x A d + f x f d = b I d b + x b - d b
127 118 126 124 3eqtr4d I V d A x A d + f x f d = x
128 108 32 60 127 syl3anc φ x A J + K < H x d e A | e f x d + f x f d = x
129 128 fveq2d φ x A J + K < H x d e A | e f x H d + f x f d = H x
130 107 129 eqtr3d φ x A J + K < H x d e A | e f x H d + H x f d = H x
131 130 breq1d φ x A J + K < H x d e A | e f x H d + H x f d J + K H x J + K
132 105 131 sylibd φ x A J + K < H x d e A | e f x H d J H x f d K H x J + K
133 98 101 lenltd φ x A J + K < H x d e A | e f x H d J ¬ J < H d
134 99 103 lenltd φ x A J + K < H x d e A | e f x H x f d K ¬ K < H x f d
135 133 134 anbi12d φ x A J + K < H x d e A | e f x H d J H x f d K ¬ J < H d ¬ K < H x f d
136 ioran ¬ J < H d K < H x f d ¬ J < H d ¬ K < H x f d
137 135 136 bitr4di φ x A J + K < H x d e A | e f x H d J H x f d K ¬ J < H d K < H x f d
138 43 60 ffvelrnd φ x A J + K < H x d e A | e f x H x 0
139 138 nn0red φ x A J + K < H x d e A | e f x H x
140 9 10 nn0addcld φ J + K 0
141 140 ad2antrr φ x A J + K < H x d e A | e f x J + K 0
142 141 nn0red φ x A J + K < H x d e A | e f x J + K
143 139 142 lenltd φ x A J + K < H x d e A | e f x H x J + K ¬ J + K < H x
144 132 137 143 3imtr3d φ x A J + K < H x d e A | e f x ¬ J < H d K < H x f d ¬ J + K < H x
145 97 144 mt4d φ x A J + K < H x d e A | e f x J < H d K < H x f d
146 70 96 145 mpjaodan φ x A J + K < H x d e A | e f x F d R G x f d = 0 R
147 146 mpteq2dva φ x A J + K < H x d e A | e f x F d R G x f d = d e A | e f x 0 R
148 147 oveq2d φ x A J + K < H x R d e A | e f x F d R G x f d = R d e A | e f x 0 R
149 ringmnd R Ring R Mnd
150 4 149 syl φ R Mnd
151 150 adantr φ x A J + K < H x R Mnd
152 ovex 0 I V
153 13 152 rab2ex e A | e f x V
154 29 gsumz R Mnd e A | e f x V R d e A | e f x 0 R = 0 R
155 151 153 154 sylancl φ x A J + K < H x R d e A | e f x 0 R = 0 R
156 148 155 eqtrd φ x A J + K < H x R d e A | e f x F d R G x f d = 0 R
157 18 28 156 3eqtrd φ x A J + K < H x F · ˙ G x = 0 R
158 157 expr φ x A J + K < H x F · ˙ G x = 0 R
159 158 ralrimiva φ x A J + K < H x F · ˙ G x = 0 R
160 1 mplring I V R Ring Y Ring
161 3 4 160 syl2anc φ Y Ring
162 5 6 ringcl Y Ring F B G B F · ˙ G B
163 161 7 8 162 syl3anc φ F · ˙ G B
164 39 140 sselid φ J + K *
165 2 1 5 29 13 14 mdegleb F · ˙ G B J + K * D F · ˙ G J + K x A J + K < H x F · ˙ G x = 0 R
166 163 164 165 syl2anc φ D F · ˙ G J + K x A J + K < H x F · ˙ G x = 0 R
167 159 166 mpbird φ D F · ˙ G J + K