Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Polynomial degrees
mdegnn0cl
Next ⟩
degltlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mdegnn0cl
Description:
Degree of a nonzero polynomial.
(Contributed by
Stefan O'Rear
, 23-Mar-2015)
Ref
Expression
Hypotheses
mdeg0.d
⊢
D
=
I
mDeg
R
mdeg0.p
⊢
P
=
I
mPoly
R
mdeg0.z
⊢
0
˙
=
0
P
mdegnn0cl.b
⊢
B
=
Base
P
Assertion
mdegnn0cl
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
→
D
⁡
F
∈
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
mdeg0.d
⊢
D
=
I
mDeg
R
2
mdeg0.p
⊢
P
=
I
mPoly
R
3
mdeg0.z
⊢
0
˙
=
0
P
4
mdegnn0cl.b
⊢
B
=
Base
P
5
eqid
⊢
0
R
=
0
R
6
eqid
⊢
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
=
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
7
eqid
⊢
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
=
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
8
1
2
4
5
6
7
3
mdegldg
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
→
∃
x
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
F
⁡
x
≠
0
R
∧
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
=
D
⁡
F
9
6
7
tdeglem1
⊢
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
:
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟶
ℕ
0
10
9
a1i
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
→
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
:
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟶
ℕ
0
11
10
ffvelrnda
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
∧
x
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
→
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
∈
ℕ
0
12
eleq1
⊢
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
=
D
⁡
F
→
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
∈
ℕ
0
↔
D
⁡
F
∈
ℕ
0
13
11
12
syl5ibcom
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
∧
x
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
→
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
=
D
⁡
F
→
D
⁡
F
∈
ℕ
0
14
13
adantld
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
∧
x
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
→
F
⁡
x
≠
0
R
∧
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
=
D
⁡
F
→
D
⁡
F
∈
ℕ
0
15
14
rexlimdva
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
→
∃
x
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
F
⁡
x
≠
0
R
∧
h
∈
m
∈
ℕ
0
I
|
m
-1
ℕ
∈
Fin
⟼
∑
ℂ
fld
h
⁡
x
=
D
⁡
F
→
D
⁡
F
∈
ℕ
0
16
8
15
mpd
⊢
R
∈
Ring
∧
F
∈
B
∧
F
≠
0
˙
→
D
⁡
F
∈
ℕ
0