Metamath Proof Explorer


Theorem mdegpropd

Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegpropd.b1 φ B = Base R
mdegpropd.b2 φ B = Base S
mdegpropd.p φ x B y B x + R y = x + S y
Assertion mdegpropd φ I mDeg R = I mDeg S

Proof

Step Hyp Ref Expression
1 mdegpropd.b1 φ B = Base R
2 mdegpropd.b2 φ B = Base S
3 mdegpropd.p φ x B y B x + R y = x + S y
4 1 2 3 mplbaspropd φ Base I mPoly R = Base I mPoly S
5 1 2 3 grpidpropd φ 0 R = 0 S
6 5 oveq2d φ c supp 0 R = c supp 0 S
7 6 imaeq2d φ b a 0 I | a -1 Fin fld b c supp 0 R = b a 0 I | a -1 Fin fld b c supp 0 S
8 7 supeq1d φ sup b a 0 I | a -1 Fin fld b c supp 0 R * < = sup b a 0 I | a -1 Fin fld b c supp 0 S * <
9 4 8 mpteq12dv φ c Base I mPoly R sup b a 0 I | a -1 Fin fld b c supp 0 R * < = c Base I mPoly S sup b a 0 I | a -1 Fin fld b c supp 0 S * <
10 eqid I mDeg R = I mDeg R
11 eqid I mPoly R = I mPoly R
12 eqid Base I mPoly R = Base I mPoly R
13 eqid 0 R = 0 R
14 eqid a 0 I | a -1 Fin = a 0 I | a -1 Fin
15 eqid b a 0 I | a -1 Fin fld b = b a 0 I | a -1 Fin fld b
16 10 11 12 13 14 15 mdegfval I mDeg R = c Base I mPoly R sup b a 0 I | a -1 Fin fld b c supp 0 R * <
17 eqid I mDeg S = I mDeg S
18 eqid I mPoly S = I mPoly S
19 eqid Base I mPoly S = Base I mPoly S
20 eqid 0 S = 0 S
21 17 18 19 20 14 15 mdegfval I mDeg S = c Base I mPoly S sup b a 0 I | a -1 Fin fld b c supp 0 S * <
22 9 16 21 3eqtr4g φ I mDeg R = I mDeg S