Metamath Proof Explorer


Theorem mdegval

Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mdegval.d D = I mDeg R
mdegval.p P = I mPoly R
mdegval.b B = Base P
mdegval.z 0 ˙ = 0 R
mdegval.a A = m 0 I | m -1 Fin
mdegval.h H = h A fld h
Assertion mdegval F B D F = sup H F supp 0 ˙ * <

Proof

Step Hyp Ref Expression
1 mdegval.d D = I mDeg R
2 mdegval.p P = I mPoly R
3 mdegval.b B = Base P
4 mdegval.z 0 ˙ = 0 R
5 mdegval.a A = m 0 I | m -1 Fin
6 mdegval.h H = h A fld h
7 oveq1 f = F f supp 0 ˙ = F supp 0 ˙
8 7 imaeq2d f = F H f supp 0 ˙ = H F supp 0 ˙
9 8 supeq1d f = F sup H f supp 0 ˙ * < = sup H F supp 0 ˙ * <
10 1 2 3 4 5 6 mdegfval D = f B sup H f supp 0 ˙ * <
11 xrltso < Or *
12 11 supex sup H F supp 0 ˙ * < V
13 9 10 12 fvmpt F B D F = sup H F supp 0 ˙ * <