Metamath Proof Explorer


Theorem mdegvsca

Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegaddle.y Y = I mPoly R
mdegaddle.d D = I mDeg R
mdegaddle.i φ I V
mdegaddle.r φ R Ring
mdegvsca.b B = Base Y
mdegvsca.e E = RLReg R
mdegvsca.p · ˙ = Y
mdegvsca.f φ F E
mdegvsca.g φ G B
Assertion mdegvsca φ D F · ˙ G = D G

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y = I mPoly R
2 mdegaddle.d D = I mDeg R
3 mdegaddle.i φ I V
4 mdegaddle.r φ R Ring
5 mdegvsca.b B = Base Y
6 mdegvsca.e E = RLReg R
7 mdegvsca.p · ˙ = Y
8 mdegvsca.f φ F E
9 mdegvsca.g φ G B
10 eqid Base R = Base R
11 eqid R = R
12 eqid x 0 I | x -1 Fin = x 0 I | x -1 Fin
13 6 10 rrgss E Base R
14 13 8 sselid φ F Base R
15 1 7 10 5 11 12 14 9 mplvsca φ F · ˙ G = x 0 I | x -1 Fin × F R f G
16 15 oveq1d φ F · ˙ G supp 0 R = x 0 I | x -1 Fin × F R f G supp 0 R
17 eqid 0 R = 0 R
18 ovex 0 I V
19 18 rabex x 0 I | x -1 Fin V
20 19 a1i φ x 0 I | x -1 Fin V
21 1 10 5 12 9 mplelf φ G : x 0 I | x -1 Fin Base R
22 6 10 11 17 20 4 8 21 rrgsupp φ x 0 I | x -1 Fin × F R f G supp 0 R = G supp 0 R
23 16 22 eqtrd φ F · ˙ G supp 0 R = G supp 0 R
24 23 imaeq2d φ y x 0 I | x -1 Fin fld y F · ˙ G supp 0 R = y x 0 I | x -1 Fin fld y G supp 0 R
25 24 supeq1d φ sup y x 0 I | x -1 Fin fld y F · ˙ G supp 0 R * < = sup y x 0 I | x -1 Fin fld y G supp 0 R * <
26 1 mpllmod I V R Ring Y LMod
27 3 4 26 syl2anc φ Y LMod
28 1 3 4 mplsca φ R = Scalar Y
29 28 fveq2d φ Base R = Base Scalar Y
30 14 29 eleqtrd φ F Base Scalar Y
31 eqid Scalar Y = Scalar Y
32 eqid Base Scalar Y = Base Scalar Y
33 5 31 7 32 lmodvscl Y LMod F Base Scalar Y G B F · ˙ G B
34 27 30 9 33 syl3anc φ F · ˙ G B
35 eqid y x 0 I | x -1 Fin fld y = y x 0 I | x -1 Fin fld y
36 2 1 5 17 12 35 mdegval F · ˙ G B D F · ˙ G = sup y x 0 I | x -1 Fin fld y F · ˙ G supp 0 R * <
37 34 36 syl φ D F · ˙ G = sup y x 0 I | x -1 Fin fld y F · ˙ G supp 0 R * <
38 2 1 5 17 12 35 mdegval G B D G = sup y x 0 I | x -1 Fin fld y G supp 0 R * <
39 9 38 syl φ D G = sup y x 0 I | x -1 Fin fld y G supp 0 R * <
40 25 37 39 3eqtr4d φ D F · ˙ G = D G