Metamath Proof Explorer


Theorem mdegvscale

Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y = I mPoly R
mdegaddle.d D = I mDeg R
mdegaddle.i φ I V
mdegaddle.r φ R Ring
mdegvscale.b B = Base Y
mdegvscale.k K = Base R
mdegvscale.p · ˙ = Y
mdegvscale.f φ F K
mdegvscale.g φ G B
Assertion mdegvscale φ D F · ˙ G D G

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y = I mPoly R
2 mdegaddle.d D = I mDeg R
3 mdegaddle.i φ I V
4 mdegaddle.r φ R Ring
5 mdegvscale.b B = Base Y
6 mdegvscale.k K = Base R
7 mdegvscale.p · ˙ = Y
8 mdegvscale.f φ F K
9 mdegvscale.g φ G B
10 eqid R = R
11 eqid a 0 I | a -1 Fin = a 0 I | a -1 Fin
12 8 adantr φ x a 0 I | a -1 Fin F K
13 9 adantr φ x a 0 I | a -1 Fin G B
14 simpr φ x a 0 I | a -1 Fin x a 0 I | a -1 Fin
15 1 7 6 5 10 11 12 13 14 mplvscaval φ x a 0 I | a -1 Fin F · ˙ G x = F R G x
16 15 adantrr φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = F R G x
17 eqid 0 R = 0 R
18 eqid b a 0 I | a -1 Fin fld b = b a 0 I | a -1 Fin fld b
19 9 adantr φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x G B
20 simprl φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x x a 0 I | a -1 Fin
21 simprr φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x D G < b a 0 I | a -1 Fin fld b x
22 2 1 5 17 11 18 19 20 21 mdeglt φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x G x = 0 R
23 22 oveq2d φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F R G x = F R 0 R
24 6 10 17 ringrz R Ring F K F R 0 R = 0 R
25 4 8 24 syl2anc φ F R 0 R = 0 R
26 25 adantr φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F R 0 R = 0 R
27 16 23 26 3eqtrd φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = 0 R
28 27 expr φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = 0 R
29 28 ralrimiva φ x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = 0 R
30 1 mpllmod I V R Ring Y LMod
31 3 4 30 syl2anc φ Y LMod
32 1 3 4 mplsca φ R = Scalar Y
33 32 fveq2d φ Base R = Base Scalar Y
34 6 33 syl5eq φ K = Base Scalar Y
35 8 34 eleqtrd φ F Base Scalar Y
36 eqid Scalar Y = Scalar Y
37 eqid Base Scalar Y = Base Scalar Y
38 5 36 7 37 lmodvscl Y LMod F Base Scalar Y G B F · ˙ G B
39 31 35 9 38 syl3anc φ F · ˙ G B
40 2 1 5 mdegxrcl G B D G *
41 9 40 syl φ D G *
42 2 1 5 17 11 18 mdegleb F · ˙ G B D G * D F · ˙ G D G x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = 0 R
43 39 41 42 syl2anc φ D F · ˙ G D G x a 0 I | a -1 Fin D G < b a 0 I | a -1 Fin fld b x F · ˙ G x = 0 R
44 29 43 mpbird φ D F · ˙ G D G