| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdet0.d |  | 
						
							| 2 |  | mdet0.a |  | 
						
							| 3 |  | mdet0.z |  | 
						
							| 4 |  | mdet0.0 |  | 
						
							| 5 |  | n0 |  | 
						
							| 6 |  | crngring |  | 
						
							| 7 | 6 | anim1ci |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 2 4 | mat0op |  | 
						
							| 10 | 3 9 | eqtrid |  | 
						
							| 11 | 8 10 | syl |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 |  | ifid |  | 
						
							| 14 | 13 | eqcomi |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 15 | mpoeq3dv |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | simpll |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | ringmnd |  | 
						
							| 23 | 6 22 | syl |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 18 4 | mndidcl |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 27 | 3ad2ant1 |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 1 18 4 19 21 28 29 | mdetr0 |  | 
						
							| 31 | 12 17 30 | 3eqtrd |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 32 | exlimdv |  | 
						
							| 34 | 5 33 | biimtrid |  | 
						
							| 35 | 34 | 3impia |  |