Metamath Proof Explorer


Theorem mdet0f1o

Description: The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unit of that ring. (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0f1o R Ring maDet R : 1-1 onto 1 R

Proof

Step Hyp Ref Expression
1 mdet0pr R Ring maDet R = 1 R
2 0ex V
3 fvex 1 R V
4 2 3 f1osn 1 R : 1-1 onto 1 R
5 f1oeq1 maDet R = 1 R maDet R : 1-1 onto 1 R 1 R : 1-1 onto 1 R
6 4 5 mpbiri maDet R = 1 R maDet R : 1-1 onto 1 R
7 1 6 syl R Ring maDet R : 1-1 onto 1 R