Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 2 3 4 5 6 7 8
|
mdetfval |
|
10 |
9
|
a1i |
|
11 |
|
mat0dimbas0 |
|
12 |
11
|
mpteq1d |
|
13 |
|
0ex |
|
14 |
13
|
a1i |
|
15 |
|
ovex |
|
16 |
|
oveq |
|
17 |
16
|
mpteq2dv |
|
18 |
17
|
oveq2d |
|
19 |
18
|
oveq2d |
|
20 |
19
|
mpteq2dv |
|
21 |
20
|
oveq2d |
|
22 |
21
|
fmptsng |
|
23 |
14 15 22
|
sylancl |
|
24 |
|
mpt0 |
|
25 |
24
|
a1i |
|
26 |
25
|
oveq2d |
|
27 |
|
eqid |
|
28 |
27
|
gsum0 |
|
29 |
26 28
|
eqtrdi |
|
30 |
29
|
oveq2d |
|
31 |
30
|
mpteq2dv |
|
32 |
31
|
oveq2d |
|
33 |
|
eqid |
|
34 |
8 33
|
ringidval |
|
35 |
34
|
eqcomi |
|
36 |
35
|
a1i |
|
37 |
36
|
oveq2d |
|
38 |
|
0fin |
|
39 |
4 6 5
|
zrhcopsgnelbas |
|
40 |
38 39
|
mp3an2 |
|
41 |
|
eqid |
|
42 |
41 7 33
|
ringridm |
|
43 |
40 42
|
syldan |
|
44 |
37 43
|
eqtrd |
|
45 |
44
|
mpteq2dva |
|
46 |
45
|
oveq2d |
|
47 |
|
simpl |
|
48 |
38
|
a1i |
|
49 |
|
simpr |
|
50 |
|
elsni |
|
51 |
|
fveq2 |
|
52 |
|
psgn0fv0 |
|
53 |
51 52
|
eqtrdi |
|
54 |
50 53
|
syl |
|
55 |
|
symgbas0 |
|
56 |
54 55
|
eleq2s |
|
57 |
56
|
adantl |
|
58 |
|
eqid |
|
59 |
58 4 6
|
psgnevpmb |
|
60 |
48 59
|
syl |
|
61 |
49 57 60
|
mpbir2and |
|
62 |
5 6 33
|
zrhpsgnevpm |
|
63 |
47 48 61 62
|
syl3anc |
|
64 |
63
|
mpteq2dva |
|
65 |
64
|
oveq2d |
|
66 |
55
|
a1i |
|
67 |
66
|
mpteq1d |
|
68 |
67
|
oveq2d |
|
69 |
|
ringmnd |
|
70 |
41 33
|
ringidcl |
|
71 |
|
eqidd |
|
72 |
41 71
|
gsumsn |
|
73 |
69 14 70 72
|
syl3anc |
|
74 |
65 68 73
|
3eqtrd |
|
75 |
32 46 74
|
3eqtrd |
|
76 |
75
|
opeq2d |
|
77 |
76
|
sneqd |
|
78 |
23 77
|
eqtr3d |
|
79 |
10 12 78
|
3eqtrd |
|