Metamath Proof Explorer


Theorem mdet1

Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in Lang p. 513. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses mdet1.d D = N maDet R
mdet1.a A = N Mat R
mdet1.n I = 1 A
mdet1.o 1 ˙ = 1 R
Assertion mdet1 R CRing N Fin D I = 1 ˙

Proof

Step Hyp Ref Expression
1 mdet1.d D = N maDet R
2 mdet1.a A = N Mat R
3 mdet1.n I = 1 A
4 mdet1.o 1 ˙ = 1 R
5 id R CRing N Fin R CRing N Fin
6 crngring R CRing R Ring
7 6 anim1ci R CRing N Fin N Fin R Ring
8 2 matring N Fin R Ring A Ring
9 eqid Base A = Base A
10 9 3 ringidcl A Ring I Base A
11 7 8 10 3syl R CRing N Fin I Base A
12 eqid Base R = Base R
13 12 4 ringidcl R Ring 1 ˙ Base R
14 6 13 syl R CRing 1 ˙ Base R
15 14 adantr R CRing N Fin 1 ˙ Base R
16 5 11 15 jca32 R CRing N Fin R CRing N Fin I Base A 1 ˙ Base R
17 eqid 0 R = 0 R
18 simplr R CRing N Fin i N j N N Fin
19 6 adantr R CRing N Fin R Ring
20 19 adantr R CRing N Fin i N j N R Ring
21 simprl R CRing N Fin i N j N i N
22 simprr R CRing N Fin i N j N j N
23 2 4 17 18 20 21 22 3 mat1ov R CRing N Fin i N j N i I j = if i = j 1 ˙ 0 R
24 23 ralrimivva R CRing N Fin i N j N i I j = if i = j 1 ˙ 0 R
25 eqid mulGrp R = mulGrp R
26 eqid mulGrp R = mulGrp R
27 1 2 9 25 17 12 26 mdetdiagid R CRing N Fin I Base A 1 ˙ Base R i N j N i I j = if i = j 1 ˙ 0 R D I = N mulGrp R 1 ˙
28 16 24 27 sylc R CRing N Fin D I = N mulGrp R 1 ˙
29 ringsrg R Ring R SRing
30 6 29 syl R CRing R SRing
31 hashcl N Fin N 0
32 25 26 4 srg1expzeq1 R SRing N 0 N mulGrp R 1 ˙ = 1 ˙
33 30 31 32 syl2an R CRing N Fin N mulGrp R 1 ˙ = 1 ˙
34 28 33 eqtrd R CRing N Fin D I = 1 ˙