Metamath Proof Explorer


Theorem mdetcl

Description: The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 7-Feb-2019)

Ref Expression
Hypotheses mdetf.d D = N maDet R
mdetf.a A = N Mat R
mdetf.b B = Base A
mdetf.k K = Base R
Assertion mdetcl R CRing M B D M K

Proof

Step Hyp Ref Expression
1 mdetf.d D = N maDet R
2 mdetf.a A = N Mat R
3 mdetf.b B = Base A
4 mdetf.k K = Base R
5 1 2 3 4 mdetf R CRing D : B K
6 5 ffvelrnda R CRing M B D M K