Metamath Proof Explorer
		
		
		
		Description:  The determinant evaluates to an element of the base ring.  (Contributed by Stefan O'Rear, 9-Sep-2015)  (Revised by AV, 7-Feb-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mdetf.d |  | 
					
						|  |  | mdetf.a |  | 
					
						|  |  | mdetf.b |  | 
					
						|  |  | mdetf.k |  | 
				
					|  | Assertion | mdetcl |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetf.d |  | 
						
							| 2 |  | mdetf.a |  | 
						
							| 3 |  | mdetf.b |  | 
						
							| 4 |  | mdetf.k |  | 
						
							| 5 | 1 2 3 4 | mdetf |  | 
						
							| 6 | 5 | ffvelcdmda |  |