Step |
Hyp |
Ref |
Expression |
1 |
|
mdetdiag.d |
|
2 |
|
mdetdiag.a |
|
3 |
|
mdetdiag.b |
|
4 |
|
mdetdiag.g |
|
5 |
|
mdetdiag.0 |
|
6 |
|
simpl3 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 2 3 7 8 9 10 4
|
mdetleib |
|
12 |
6 11
|
syl |
|
13 |
|
simpl1 |
|
14 |
13
|
ad2antrr |
|
15 |
6
|
ad2antrr |
|
16 |
|
simpr |
|
17 |
2 3 4 8 9 10
|
madetsumid |
|
18 |
14 15 16 17
|
syl3anc |
|
19 |
|
iftrue |
|
20 |
19
|
eqcomd |
|
21 |
20
|
adantl |
|
22 |
18 21
|
eqtrd |
|
23 |
|
simplll |
|
24 |
|
simpr |
|
25 |
24
|
ad2antrr |
|
26 |
|
simpr |
|
27 |
|
neqne |
|
28 |
26 27
|
anim12i |
|
29 |
1 2 3 4 5 7 8 9 10
|
mdetdiaglem |
|
30 |
23 25 28 29
|
syl3anc |
|
31 |
|
iffalse |
|
32 |
31
|
adantl |
|
33 |
32
|
eqcomd |
|
34 |
30 33
|
eqtrd |
|
35 |
22 34
|
pm2.61dan |
|
36 |
35
|
mpteq2dva |
|
37 |
36
|
oveq2d |
|
38 |
|
crngring |
|
39 |
|
ringmnd |
|
40 |
38 39
|
syl |
|
41 |
40
|
3ad2ant1 |
|
42 |
41
|
adantr |
|
43 |
|
fvexd |
|
44 |
|
eqid |
|
45 |
44
|
symgid |
|
46 |
45
|
3ad2ant2 |
|
47 |
44
|
symggrp |
|
48 |
47
|
3ad2ant2 |
|
49 |
|
eqid |
|
50 |
7 49
|
grpidcl |
|
51 |
48 50
|
syl |
|
52 |
46 51
|
eqeltrd |
|
53 |
52
|
adantr |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
4 55
|
mgpbas |
|
57 |
4
|
crngmgp |
|
58 |
57
|
3ad2ant1 |
|
59 |
58
|
adantr |
|
60 |
|
simpl2 |
|
61 |
|
simpr |
|
62 |
3
|
eleq2i |
|
63 |
62
|
biimpi |
|
64 |
63
|
3ad2ant3 |
|
65 |
64
|
ad2antrr |
|
66 |
2 55
|
matecl |
|
67 |
61 61 65 66
|
syl3anc |
|
68 |
67
|
ralrimiva |
|
69 |
56 59 60 68
|
gsummptcl |
|
70 |
5 42 43 53 54 69
|
gsummptif1n0 |
|
71 |
12 37 70
|
3eqtrd |
|
72 |
71
|
ex |
|