| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetdiag.d |
|
| 2 |
|
mdetdiag.a |
|
| 3 |
|
mdetdiag.b |
|
| 4 |
|
mdetdiag.g |
|
| 5 |
|
mdetdiag.0 |
|
| 6 |
|
simpl3 |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
1 2 3 7 8 9 10 4
|
mdetleib |
|
| 12 |
6 11
|
syl |
|
| 13 |
|
simpl1 |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
6
|
ad2antrr |
|
| 16 |
|
simpr |
|
| 17 |
2 3 4 8 9 10
|
madetsumid |
|
| 18 |
14 15 16 17
|
syl3anc |
|
| 19 |
|
iftrue |
|
| 20 |
19
|
eqcomd |
|
| 21 |
20
|
adantl |
|
| 22 |
18 21
|
eqtrd |
|
| 23 |
|
simplll |
|
| 24 |
|
simpr |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
simpr |
|
| 27 |
|
neqne |
|
| 28 |
26 27
|
anim12i |
|
| 29 |
1 2 3 4 5 7 8 9 10
|
mdetdiaglem |
|
| 30 |
23 25 28 29
|
syl3anc |
|
| 31 |
|
iffalse |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
eqcomd |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
22 34
|
pm2.61dan |
|
| 36 |
35
|
mpteq2dva |
|
| 37 |
36
|
oveq2d |
|
| 38 |
|
crngring |
|
| 39 |
|
ringmnd |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
41
|
adantr |
|
| 43 |
|
fvexd |
|
| 44 |
|
eqid |
|
| 45 |
44
|
symgid |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
44
|
symggrp |
|
| 48 |
47
|
3ad2ant2 |
|
| 49 |
|
eqid |
|
| 50 |
7 49
|
grpidcl |
|
| 51 |
48 50
|
syl |
|
| 52 |
46 51
|
eqeltrd |
|
| 53 |
52
|
adantr |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
4 55
|
mgpbas |
|
| 57 |
4
|
crngmgp |
|
| 58 |
57
|
3ad2ant1 |
|
| 59 |
58
|
adantr |
|
| 60 |
|
simpl2 |
|
| 61 |
|
simpr |
|
| 62 |
3
|
eleq2i |
|
| 63 |
62
|
biimpi |
|
| 64 |
63
|
3ad2ant3 |
|
| 65 |
64
|
ad2antrr |
|
| 66 |
2 55
|
matecl |
|
| 67 |
61 61 65 66
|
syl3anc |
|
| 68 |
67
|
ralrimiva |
|
| 69 |
56 59 60 68
|
gsummptcl |
|
| 70 |
5 42 43 53 54 69
|
gsummptif1n0 |
|
| 71 |
12 37 70
|
3eqtrd |
|
| 72 |
71
|
ex |
|