Metamath Proof Explorer


Theorem mdetdiag

Description: The determinant of a diagonal matrix is the product of the entries in the diagonal. (Contributed by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D = N maDet R
mdetdiag.a A = N Mat R
mdetdiag.b B = Base A
mdetdiag.g G = mulGrp R
mdetdiag.0 0 ˙ = 0 R
Assertion mdetdiag R CRing N Fin M B i N j N i j i M j = 0 ˙ D M = G k N k M k

Proof

Step Hyp Ref Expression
1 mdetdiag.d D = N maDet R
2 mdetdiag.a A = N Mat R
3 mdetdiag.b B = Base A
4 mdetdiag.g G = mulGrp R
5 mdetdiag.0 0 ˙ = 0 R
6 simpl3 R CRing N Fin M B i N j N i j i M j = 0 ˙ M B
7 eqid Base SymGrp N = Base SymGrp N
8 eqid ℤRHom R = ℤRHom R
9 eqid pmSgn N = pmSgn N
10 eqid R = R
11 1 2 3 7 8 9 10 4 mdetleib M B D M = R p Base SymGrp N ℤRHom R pmSgn N p R G k N p k M k
12 6 11 syl R CRing N Fin M B i N j N i j i M j = 0 ˙ D M = R p Base SymGrp N ℤRHom R pmSgn N p R G k N p k M k
13 simpl1 R CRing N Fin M B i N j N i j i M j = 0 ˙ R CRing
14 13 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N R CRing
15 6 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N M B
16 simpr R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N p = I N
17 2 3 4 8 9 10 madetsumid R CRing M B p = I N ℤRHom R pmSgn N p R G k N p k M k = G k N k M k
18 14 15 16 17 syl3anc R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N ℤRHom R pmSgn N p R G k N p k M k = G k N k M k
19 iftrue p = I N if p = I N G k N k M k 0 ˙ = G k N k M k
20 19 eqcomd p = I N G k N k M k = if p = I N G k N k M k 0 ˙
21 20 adantl R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N G k N k M k = if p = I N G k N k M k 0 ˙
22 18 21 eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p = I N ℤRHom R pmSgn N p R G k N p k M k = if p = I N G k N k M k 0 ˙
23 simplll R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N R CRing N Fin M B
24 simpr R CRing N Fin M B i N j N i j i M j = 0 ˙ i N j N i j i M j = 0 ˙
25 24 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N i N j N i j i M j = 0 ˙
26 simpr R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p Base SymGrp N
27 neqne ¬ p = I N p I N
28 26 27 anim12i R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N p Base SymGrp N p I N
29 1 2 3 4 5 7 8 9 10 mdetdiaglem R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N p I N ℤRHom R pmSgn N p R G k N p k M k = 0 ˙
30 23 25 28 29 syl3anc R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N ℤRHom R pmSgn N p R G k N p k M k = 0 ˙
31 iffalse ¬ p = I N if p = I N G k N k M k 0 ˙ = 0 ˙
32 31 adantl R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N if p = I N G k N k M k 0 ˙ = 0 ˙
33 32 eqcomd R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N 0 ˙ = if p = I N G k N k M k 0 ˙
34 30 33 eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ¬ p = I N ℤRHom R pmSgn N p R G k N p k M k = if p = I N G k N k M k 0 ˙
35 22 34 pm2.61dan R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ℤRHom R pmSgn N p R G k N p k M k = if p = I N G k N k M k 0 ˙
36 35 mpteq2dva R CRing N Fin M B i N j N i j i M j = 0 ˙ p Base SymGrp N ℤRHom R pmSgn N p R G k N p k M k = p Base SymGrp N if p = I N G k N k M k 0 ˙
37 36 oveq2d R CRing N Fin M B i N j N i j i M j = 0 ˙ R p Base SymGrp N ℤRHom R pmSgn N p R G k N p k M k = R p Base SymGrp N if p = I N G k N k M k 0 ˙
38 crngring R CRing R Ring
39 ringmnd R Ring R Mnd
40 38 39 syl R CRing R Mnd
41 40 3ad2ant1 R CRing N Fin M B R Mnd
42 41 adantr R CRing N Fin M B i N j N i j i M j = 0 ˙ R Mnd
43 fvexd R CRing N Fin M B i N j N i j i M j = 0 ˙ Base SymGrp N V
44 eqid SymGrp N = SymGrp N
45 44 symgid N Fin I N = 0 SymGrp N
46 45 3ad2ant2 R CRing N Fin M B I N = 0 SymGrp N
47 44 symggrp N Fin SymGrp N Grp
48 47 3ad2ant2 R CRing N Fin M B SymGrp N Grp
49 eqid 0 SymGrp N = 0 SymGrp N
50 7 49 grpidcl SymGrp N Grp 0 SymGrp N Base SymGrp N
51 48 50 syl R CRing N Fin M B 0 SymGrp N Base SymGrp N
52 46 51 eqeltrd R CRing N Fin M B I N Base SymGrp N
53 52 adantr R CRing N Fin M B i N j N i j i M j = 0 ˙ I N Base SymGrp N
54 eqid p Base SymGrp N if p = I N G k N k M k 0 ˙ = p Base SymGrp N if p = I N G k N k M k 0 ˙
55 eqid Base R = Base R
56 4 55 mgpbas Base R = Base G
57 4 crngmgp R CRing G CMnd
58 57 3ad2ant1 R CRing N Fin M B G CMnd
59 58 adantr R CRing N Fin M B i N j N i j i M j = 0 ˙ G CMnd
60 simpl2 R CRing N Fin M B i N j N i j i M j = 0 ˙ N Fin
61 simpr R CRing N Fin M B i N j N i j i M j = 0 ˙ k N k N
62 3 eleq2i M B M Base A
63 62 biimpi M B M Base A
64 63 3ad2ant3 R CRing N Fin M B M Base A
65 64 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ k N M Base A
66 2 55 matecl k N k N M Base A k M k Base R
67 61 61 65 66 syl3anc R CRing N Fin M B i N j N i j i M j = 0 ˙ k N k M k Base R
68 67 ralrimiva R CRing N Fin M B i N j N i j i M j = 0 ˙ k N k M k Base R
69 56 59 60 68 gsummptcl R CRing N Fin M B i N j N i j i M j = 0 ˙ G k N k M k Base R
70 5 42 43 53 54 69 gsummptif1n0 R CRing N Fin M B i N j N i j i M j = 0 ˙ R p Base SymGrp N if p = I N G k N k M k 0 ˙ = G k N k M k
71 12 37 70 3eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ D M = G k N k M k
72 71 ex R CRing N Fin M B i N j N i j i M j = 0 ˙ D M = G k N k M k