| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetdiag.d |
|
| 2 |
|
mdetdiag.a |
|
| 3 |
|
mdetdiag.b |
|
| 4 |
|
mdetdiag.g |
|
| 5 |
|
mdetdiag.0 |
|
| 6 |
|
mdetdiaglem.g |
|
| 7 |
|
mdetdiaglem.z |
|
| 8 |
|
mdetdiaglem.s |
|
| 9 |
|
mdetdiaglem.t |
|
| 10 |
7
|
a1i |
|
| 11 |
8
|
a1i |
|
| 12 |
10 11
|
coeq12d |
|
| 13 |
12
|
fveq1d |
|
| 14 |
|
eqid |
|
| 15 |
14 6
|
symgbasf1o |
|
| 16 |
|
f1ofn |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
fnnfpeq0 |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
bicomd |
|
| 22 |
21
|
necon3bid |
|
| 23 |
|
n0 |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
4 25
|
mgpplusg |
|
| 27 |
4
|
crngmgp |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
|
simpll2 |
|
| 31 |
|
eqid |
|
| 32 |
2 31 3
|
matbas2i |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
|
elmapi |
|
| 35 |
33 34
|
syl |
|
| 36 |
4 31
|
mgpbas |
|
| 37 |
36
|
eqcomi |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
feq3d |
|
| 40 |
35 39
|
mpbird |
|
| 41 |
40
|
ad3antrrr |
|
| 42 |
14 6
|
symgbasf |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
|
simpr |
|
| 46 |
41 44 45
|
fovcdmd |
|
| 47 |
|
disjdif |
|
| 48 |
47
|
a1i |
|
| 49 |
|
difss |
|
| 50 |
|
dmss |
|
| 51 |
49 50
|
ax-mp |
|
| 52 |
42
|
adantl |
|
| 53 |
51 52
|
fssdm |
|
| 54 |
53
|
sseld |
|
| 55 |
54
|
impr |
|
| 56 |
55
|
snssd |
|
| 57 |
|
undif |
|
| 58 |
56 57
|
sylib |
|
| 59 |
58
|
eqcomd |
|
| 60 |
24 26 29 30 46 48 59
|
gsummptfidmsplit |
|
| 61 |
|
crngring |
|
| 62 |
61
|
adantr |
|
| 63 |
4
|
ringmgp |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
3adant3 |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
vex |
|
| 68 |
67
|
a1i |
|
| 69 |
35
|
ad2antrr |
|
| 70 |
43 55
|
ffvelcdmd |
|
| 71 |
69 70 55
|
fovcdmd |
|
| 72 |
|
fveq2 |
|
| 73 |
|
id |
|
| 74 |
72 73
|
oveq12d |
|
| 75 |
36 74
|
gsumsn |
|
| 76 |
66 68 71 75
|
syl3anc |
|
| 77 |
|
simprr |
|
| 78 |
17
|
ad2antrl |
|
| 79 |
|
fnelnfp |
|
| 80 |
78 55 79
|
syl2anc |
|
| 81 |
77 80
|
mpbid |
|
| 82 |
42
|
ad2antrl |
|
| 83 |
42
|
adantl |
|
| 84 |
51 83
|
fssdm |
|
| 85 |
84
|
sseld |
|
| 86 |
85
|
impr |
|
| 87 |
82 86
|
ffvelcdmd |
|
| 88 |
|
neeq1 |
|
| 89 |
|
oveq1 |
|
| 90 |
89
|
eqeq1d |
|
| 91 |
88 90
|
imbi12d |
|
| 92 |
|
neeq2 |
|
| 93 |
|
oveq2 |
|
| 94 |
93
|
eqeq1d |
|
| 95 |
92 94
|
imbi12d |
|
| 96 |
91 95
|
rspc2v |
|
| 97 |
87 86 96
|
syl2anc |
|
| 98 |
97
|
impancom |
|
| 99 |
98
|
imp |
|
| 100 |
81 99
|
mpd |
|
| 101 |
76 100
|
eqtrd |
|
| 102 |
101
|
oveq1d |
|
| 103 |
61
|
3ad2ant1 |
|
| 104 |
103
|
ad2antrr |
|
| 105 |
28
|
adantr |
|
| 106 |
|
simpl2 |
|
| 107 |
|
difss |
|
| 108 |
|
ssfi |
|
| 109 |
106 107 108
|
sylancl |
|
| 110 |
35
|
ad2antrr |
|
| 111 |
83
|
adantr |
|
| 112 |
|
eldifi |
|
| 113 |
112
|
adantl |
|
| 114 |
111 113
|
ffvelcdmd |
|
| 115 |
110 114 113
|
fovcdmd |
|
| 116 |
115
|
ralrimiva |
|
| 117 |
36 105 109 116
|
gsummptcl |
|
| 118 |
117
|
ad2ant2r |
|
| 119 |
31 25 5
|
ringlz |
|
| 120 |
104 118 119
|
syl2anc |
|
| 121 |
60 102 120
|
3eqtrd |
|
| 122 |
121
|
expr |
|
| 123 |
122
|
exlimdv |
|
| 124 |
23 123
|
biimtrid |
|
| 125 |
22 124
|
sylbid |
|
| 126 |
125
|
expimpd |
|
| 127 |
126
|
3impia |
|
| 128 |
13 127
|
oveq12d |
|
| 129 |
|
3simpa |
|
| 130 |
|
simpl |
|
| 131 |
61
|
ad2antrr |
|
| 132 |
|
zrhpsgnmhm |
|
| 133 |
61 132
|
sylan |
|
| 134 |
|
eqid |
|
| 135 |
6 134
|
mhmf |
|
| 136 |
133 135
|
syl |
|
| 137 |
136
|
ffvelcdmda |
|
| 138 |
|
eqid |
|
| 139 |
138 31
|
mgpbas |
|
| 140 |
139
|
eqcomi |
|
| 141 |
140 9 5
|
ringrz |
|
| 142 |
131 137 141
|
syl2anc |
|
| 143 |
129 130 142
|
syl2an |
|
| 144 |
143
|
3adant2 |
|
| 145 |
128 144
|
eqtrd |
|