Step |
Hyp |
Ref |
Expression |
1 |
|
mdetdiag.d |
|
2 |
|
mdetdiag.a |
|
3 |
|
mdetdiag.b |
|
4 |
|
mdetdiag.g |
|
5 |
|
mdetdiag.0 |
|
6 |
|
mdetdiaglem.g |
|
7 |
|
mdetdiaglem.z |
|
8 |
|
mdetdiaglem.s |
|
9 |
|
mdetdiaglem.t |
|
10 |
7
|
a1i |
|
11 |
8
|
a1i |
|
12 |
10 11
|
coeq12d |
|
13 |
12
|
fveq1d |
|
14 |
|
eqid |
|
15 |
14 6
|
symgbasf1o |
|
16 |
|
f1ofn |
|
17 |
15 16
|
syl |
|
18 |
|
fnnfpeq0 |
|
19 |
17 18
|
syl |
|
20 |
19
|
adantl |
|
21 |
20
|
bicomd |
|
22 |
21
|
necon3bid |
|
23 |
|
n0 |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
4 25
|
mgpplusg |
|
27 |
4
|
crngmgp |
|
28 |
27
|
3ad2ant1 |
|
29 |
28
|
ad2antrr |
|
30 |
|
simpll2 |
|
31 |
|
eqid |
|
32 |
2 31 3
|
matbas2i |
|
33 |
32
|
3ad2ant3 |
|
34 |
|
elmapi |
|
35 |
33 34
|
syl |
|
36 |
4 31
|
mgpbas |
|
37 |
36
|
eqcomi |
|
38 |
37
|
a1i |
|
39 |
38
|
feq3d |
|
40 |
35 39
|
mpbird |
|
41 |
40
|
ad3antrrr |
|
42 |
14 6
|
symgbasf |
|
43 |
42
|
ad2antrl |
|
44 |
43
|
ffvelrnda |
|
45 |
|
simpr |
|
46 |
41 44 45
|
fovrnd |
|
47 |
|
disjdif |
|
48 |
47
|
a1i |
|
49 |
|
difss |
|
50 |
|
dmss |
|
51 |
49 50
|
ax-mp |
|
52 |
42
|
adantl |
|
53 |
51 52
|
fssdm |
|
54 |
53
|
sseld |
|
55 |
54
|
impr |
|
56 |
55
|
snssd |
|
57 |
|
undif |
|
58 |
56 57
|
sylib |
|
59 |
58
|
eqcomd |
|
60 |
24 26 29 30 46 48 59
|
gsummptfidmsplit |
|
61 |
|
crngring |
|
62 |
61
|
adantr |
|
63 |
4
|
ringmgp |
|
64 |
62 63
|
syl |
|
65 |
64
|
3adant3 |
|
66 |
65
|
ad2antrr |
|
67 |
|
vex |
|
68 |
67
|
a1i |
|
69 |
35
|
ad2antrr |
|
70 |
43 55
|
ffvelrnd |
|
71 |
69 70 55
|
fovrnd |
|
72 |
|
fveq2 |
|
73 |
|
id |
|
74 |
72 73
|
oveq12d |
|
75 |
36 74
|
gsumsn |
|
76 |
66 68 71 75
|
syl3anc |
|
77 |
|
simprr |
|
78 |
17
|
ad2antrl |
|
79 |
|
fnelnfp |
|
80 |
78 55 79
|
syl2anc |
|
81 |
77 80
|
mpbid |
|
82 |
42
|
ad2antrl |
|
83 |
42
|
adantl |
|
84 |
51 83
|
fssdm |
|
85 |
84
|
sseld |
|
86 |
85
|
impr |
|
87 |
82 86
|
ffvelrnd |
|
88 |
|
neeq1 |
|
89 |
|
oveq1 |
|
90 |
89
|
eqeq1d |
|
91 |
88 90
|
imbi12d |
|
92 |
|
neeq2 |
|
93 |
|
oveq2 |
|
94 |
93
|
eqeq1d |
|
95 |
92 94
|
imbi12d |
|
96 |
91 95
|
rspc2v |
|
97 |
87 86 96
|
syl2anc |
|
98 |
97
|
impancom |
|
99 |
98
|
imp |
|
100 |
81 99
|
mpd |
|
101 |
76 100
|
eqtrd |
|
102 |
101
|
oveq1d |
|
103 |
61
|
3ad2ant1 |
|
104 |
103
|
ad2antrr |
|
105 |
28
|
adantr |
|
106 |
|
simpl2 |
|
107 |
|
difss |
|
108 |
|
ssfi |
|
109 |
106 107 108
|
sylancl |
|
110 |
35
|
ad2antrr |
|
111 |
83
|
adantr |
|
112 |
|
eldifi |
|
113 |
112
|
adantl |
|
114 |
111 113
|
ffvelrnd |
|
115 |
110 114 113
|
fovrnd |
|
116 |
115
|
ralrimiva |
|
117 |
36 105 109 116
|
gsummptcl |
|
118 |
117
|
ad2ant2r |
|
119 |
31 25 5
|
ringlz |
|
120 |
104 118 119
|
syl2anc |
|
121 |
60 102 120
|
3eqtrd |
|
122 |
121
|
expr |
|
123 |
122
|
exlimdv |
|
124 |
23 123
|
syl5bi |
|
125 |
22 124
|
sylbid |
|
126 |
125
|
expimpd |
|
127 |
126
|
3impia |
|
128 |
13 127
|
oveq12d |
|
129 |
|
3simpa |
|
130 |
|
simpl |
|
131 |
61
|
ad2antrr |
|
132 |
|
zrhpsgnmhm |
|
133 |
61 132
|
sylan |
|
134 |
|
eqid |
|
135 |
6 134
|
mhmf |
|
136 |
133 135
|
syl |
|
137 |
136
|
ffvelrnda |
|
138 |
|
eqid |
|
139 |
138 31
|
mgpbas |
|
140 |
139
|
eqcomi |
|
141 |
140 9 5
|
ringrz |
|
142 |
131 137 141
|
syl2anc |
|
143 |
129 130 142
|
syl2an |
|
144 |
143
|
3adant2 |
|
145 |
128 144
|
eqtrd |
|