Metamath Proof Explorer


Theorem mdetdiaglem

Description: Lemma for mdetdiag . Previously part of proof for mdet1 . (Contributed by SO, 10-Jul-2018) (Revised by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D = N maDet R
mdetdiag.a A = N Mat R
mdetdiag.b B = Base A
mdetdiag.g G = mulGrp R
mdetdiag.0 0 ˙ = 0 R
mdetdiaglem.g H = Base SymGrp N
mdetdiaglem.z Z = ℤRHom R
mdetdiaglem.s S = pmSgn N
mdetdiaglem.t · ˙ = R
Assertion mdetdiaglem R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z S P · ˙ G k N P k M k = 0 ˙

Proof

Step Hyp Ref Expression
1 mdetdiag.d D = N maDet R
2 mdetdiag.a A = N Mat R
3 mdetdiag.b B = Base A
4 mdetdiag.g G = mulGrp R
5 mdetdiag.0 0 ˙ = 0 R
6 mdetdiaglem.g H = Base SymGrp N
7 mdetdiaglem.z Z = ℤRHom R
8 mdetdiaglem.s S = pmSgn N
9 mdetdiaglem.t · ˙ = R
10 7 a1i R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z = ℤRHom R
11 8 a1i R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N S = pmSgn N
12 10 11 coeq12d R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z S = ℤRHom R pmSgn N
13 12 fveq1d R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z S P = ℤRHom R pmSgn N P
14 eqid SymGrp N = SymGrp N
15 14 6 symgbasf1o P H P : N 1-1 onto N
16 f1ofn P : N 1-1 onto N P Fn N
17 15 16 syl P H P Fn N
18 fnnfpeq0 P Fn N dom P I = P = I N
19 17 18 syl P H dom P I = P = I N
20 19 adantl R CRing N Fin M B i N j N i j i M j = 0 ˙ P H dom P I = P = I N
21 20 bicomd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P = I N dom P I =
22 21 necon3bid R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N dom P I
23 n0 dom P I s s dom P I
24 eqid Base G = Base G
25 eqid R = R
26 4 25 mgpplusg R = + G
27 4 crngmgp R CRing G CMnd
28 27 3ad2ant1 R CRing N Fin M B G CMnd
29 28 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G CMnd
30 simpll2 R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I N Fin
31 eqid Base R = Base R
32 2 31 3 matbas2i M B M Base R N × N
33 32 3ad2ant3 R CRing N Fin M B M Base R N × N
34 elmapi M Base R N × N M : N × N Base R
35 33 34 syl R CRing N Fin M B M : N × N Base R
36 4 31 mgpbas Base R = Base G
37 36 eqcomi Base G = Base R
38 37 a1i R CRing N Fin M B Base G = Base R
39 38 feq3d R CRing N Fin M B M : N × N Base G M : N × N Base R
40 35 39 mpbird R CRing N Fin M B M : N × N Base G
41 40 ad3antrrr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I k N M : N × N Base G
42 14 6 symgbasf P H P : N N
43 42 ad2antrl R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P : N N
44 43 ffvelrnda R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I k N P k N
45 simpr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I k N k N
46 41 44 45 fovrnd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I k N P k M k Base G
47 disjdif s N s =
48 47 a1i R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s N s =
49 difss P I P
50 dmss P I P dom P I dom P
51 49 50 ax-mp dom P I dom P
52 42 adantl R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P : N N
53 51 52 fssdm R CRing N Fin M B i N j N i j i M j = 0 ˙ P H dom P I N
54 53 sseld R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s N
55 54 impr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s N
56 55 snssd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s N
57 undif s N s N s = N
58 56 57 sylib R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s N s = N
59 58 eqcomd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I N = s N s
60 24 26 29 30 46 48 59 gsummptfidmsplit R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k N P k M k = G k s P k M k R G k N s P k M k
61 crngring R CRing R Ring
62 61 adantr R CRing N Fin R Ring
63 4 ringmgp R Ring G Mnd
64 62 63 syl R CRing N Fin G Mnd
65 64 3adant3 R CRing N Fin M B G Mnd
66 65 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G Mnd
67 vex s V
68 67 a1i R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s V
69 35 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I M : N × N Base R
70 43 55 ffvelrnd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s N
71 69 70 55 fovrnd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s M s Base R
72 fveq2 k = s P k = P s
73 id k = s k = s
74 72 73 oveq12d k = s P k M k = P s M s
75 36 74 gsumsn G Mnd s V P s M s Base R G k s P k M k = P s M s
76 66 68 71 75 syl3anc R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k s P k M k = P s M s
77 simprr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s dom P I
78 17 ad2antrl R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P Fn N
79 fnelnfp P Fn N s N s dom P I P s s
80 78 55 79 syl2anc R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I s dom P I P s s
81 77 80 mpbid R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s s
82 42 ad2antrl R CRing N Fin M B P H s dom P I P : N N
83 42 adantl R CRing N Fin M B P H P : N N
84 51 83 fssdm R CRing N Fin M B P H dom P I N
85 84 sseld R CRing N Fin M B P H s dom P I s N
86 85 impr R CRing N Fin M B P H s dom P I s N
87 82 86 ffvelrnd R CRing N Fin M B P H s dom P I P s N
88 neeq1 i = P s i j P s j
89 oveq1 i = P s i M j = P s M j
90 89 eqeq1d i = P s i M j = 0 ˙ P s M j = 0 ˙
91 88 90 imbi12d i = P s i j i M j = 0 ˙ P s j P s M j = 0 ˙
92 neeq2 j = s P s j P s s
93 oveq2 j = s P s M j = P s M s
94 93 eqeq1d j = s P s M j = 0 ˙ P s M s = 0 ˙
95 92 94 imbi12d j = s P s j P s M j = 0 ˙ P s s P s M s = 0 ˙
96 91 95 rspc2v P s N s N i N j N i j i M j = 0 ˙ P s s P s M s = 0 ˙
97 87 86 96 syl2anc R CRing N Fin M B P H s dom P I i N j N i j i M j = 0 ˙ P s s P s M s = 0 ˙
98 97 impancom R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s s P s M s = 0 ˙
99 98 imp R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s s P s M s = 0 ˙
100 81 99 mpd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I P s M s = 0 ˙
101 76 100 eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k s P k M k = 0 ˙
102 101 oveq1d R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k s P k M k R G k N s P k M k = 0 ˙ R G k N s P k M k
103 61 3ad2ant1 R CRing N Fin M B R Ring
104 103 ad2antrr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I R Ring
105 28 adantr R CRing N Fin M B P H G CMnd
106 simpl2 R CRing N Fin M B P H N Fin
107 difss N s N
108 ssfi N Fin N s N N s Fin
109 106 107 108 sylancl R CRing N Fin M B P H N s Fin
110 35 ad2antrr R CRing N Fin M B P H k N s M : N × N Base R
111 83 adantr R CRing N Fin M B P H k N s P : N N
112 eldifi k N s k N
113 112 adantl R CRing N Fin M B P H k N s k N
114 111 113 ffvelrnd R CRing N Fin M B P H k N s P k N
115 110 114 113 fovrnd R CRing N Fin M B P H k N s P k M k Base R
116 115 ralrimiva R CRing N Fin M B P H k N s P k M k Base R
117 36 105 109 116 gsummptcl R CRing N Fin M B P H G k N s P k M k Base R
118 117 ad2ant2r R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k N s P k M k Base R
119 31 25 5 ringlz R Ring G k N s P k M k Base R 0 ˙ R G k N s P k M k = 0 ˙
120 104 118 119 syl2anc R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I 0 ˙ R G k N s P k M k = 0 ˙
121 60 102 120 3eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k N P k M k = 0 ˙
122 121 expr R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s dom P I G k N P k M k = 0 ˙
123 122 exlimdv R CRing N Fin M B i N j N i j i M j = 0 ˙ P H s s dom P I G k N P k M k = 0 ˙
124 23 123 syl5bi R CRing N Fin M B i N j N i j i M j = 0 ˙ P H dom P I G k N P k M k = 0 ˙
125 22 124 sylbid R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N G k N P k M k = 0 ˙
126 125 expimpd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N G k N P k M k = 0 ˙
127 126 3impia R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N G k N P k M k = 0 ˙
128 13 127 oveq12d R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z S P · ˙ G k N P k M k = ℤRHom R pmSgn N P · ˙ 0 ˙
129 3simpa R CRing N Fin M B R CRing N Fin
130 simpl P H P I N P H
131 61 ad2antrr R CRing N Fin P H R Ring
132 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
133 61 132 sylan R CRing N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
134 eqid Base mulGrp R = Base mulGrp R
135 6 134 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : H Base mulGrp R
136 133 135 syl R CRing N Fin ℤRHom R pmSgn N : H Base mulGrp R
137 136 ffvelrnda R CRing N Fin P H ℤRHom R pmSgn N P Base mulGrp R
138 eqid mulGrp R = mulGrp R
139 138 31 mgpbas Base R = Base mulGrp R
140 139 eqcomi Base mulGrp R = Base R
141 140 9 5 ringrz R Ring ℤRHom R pmSgn N P Base mulGrp R ℤRHom R pmSgn N P · ˙ 0 ˙ = 0 ˙
142 131 137 141 syl2anc R CRing N Fin P H ℤRHom R pmSgn N P · ˙ 0 ˙ = 0 ˙
143 129 130 142 syl2an R CRing N Fin M B P H P I N ℤRHom R pmSgn N P · ˙ 0 ˙ = 0 ˙
144 143 3adant2 R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N ℤRHom R pmSgn N P · ˙ 0 ˙ = 0 ˙
145 128 144 eqtrd R CRing N Fin M B i N j N i j i M j = 0 ˙ P H P I N Z S P · ˙ G k N P k M k = 0 ˙