| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetf.d |  | 
						
							| 2 |  | mdetf.a |  | 
						
							| 3 |  | mdetf.b |  | 
						
							| 4 |  | mdetf.k |  | 
						
							| 5 |  | crngring |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | ringcmn |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 2 3 | matrcl |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | simpld |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | symgbasfi |  | 
						
							| 15 | 11 14 | syl |  | 
						
							| 16 | 5 | ad2antrr |  | 
						
							| 17 |  | zrhpsgnmhm |  | 
						
							| 18 | 6 11 17 | syl2anc |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 4 | mgpbas |  | 
						
							| 21 | 13 20 | mhmf |  | 
						
							| 22 | 18 21 | syl |  | 
						
							| 23 | 22 | ffvelcdmda |  | 
						
							| 24 | 19 | crngmgp |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 | 11 | adantr |  | 
						
							| 27 | 2 4 3 | matbas2i |  | 
						
							| 28 | 27 | ad3antlr |  | 
						
							| 29 |  | elmapi |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 12 13 | symgbasf |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 32 | ffvelcdmda |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 30 33 34 | fovcdmd |  | 
						
							| 36 | 35 | ralrimiva |  | 
						
							| 37 | 20 25 26 36 | gsummptcl |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 4 38 | ringcl |  | 
						
							| 40 | 16 23 37 39 | syl3anc |  | 
						
							| 41 | 40 | ralrimiva |  | 
						
							| 42 | 4 8 15 41 | gsummptcl |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 1 2 3 13 43 44 38 19 | mdetfval |  | 
						
							| 46 | 42 45 | fmptd |  |