Metamath Proof Explorer


Theorem mdetf

Description: Functionality of the determinant, see also definition in Lang p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetf.d D = N maDet R
mdetf.a A = N Mat R
mdetf.b B = Base A
mdetf.k K = Base R
Assertion mdetf R CRing D : B K

Proof

Step Hyp Ref Expression
1 mdetf.d D = N maDet R
2 mdetf.a A = N Mat R
3 mdetf.b B = Base A
4 mdetf.k K = Base R
5 crngring R CRing R Ring
6 5 adantr R CRing m B R Ring
7 ringcmn R Ring R CMnd
8 6 7 syl R CRing m B R CMnd
9 2 3 matrcl m B N Fin R V
10 9 adantl R CRing m B N Fin R V
11 10 simpld R CRing m B N Fin
12 eqid SymGrp N = SymGrp N
13 eqid Base SymGrp N = Base SymGrp N
14 12 13 symgbasfi N Fin Base SymGrp N Fin
15 11 14 syl R CRing m B Base SymGrp N Fin
16 5 ad2antrr R CRing m B p Base SymGrp N R Ring
17 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
18 6 11 17 syl2anc R CRing m B ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
19 eqid mulGrp R = mulGrp R
20 19 4 mgpbas K = Base mulGrp R
21 13 20 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N K
22 18 21 syl R CRing m B ℤRHom R pmSgn N : Base SymGrp N K
23 22 ffvelrnda R CRing m B p Base SymGrp N ℤRHom R pmSgn N p K
24 19 crngmgp R CRing mulGrp R CMnd
25 24 ad2antrr R CRing m B p Base SymGrp N mulGrp R CMnd
26 11 adantr R CRing m B p Base SymGrp N N Fin
27 2 4 3 matbas2i m B m K N × N
28 27 ad3antlr R CRing m B p Base SymGrp N c N m K N × N
29 elmapi m K N × N m : N × N K
30 28 29 syl R CRing m B p Base SymGrp N c N m : N × N K
31 12 13 symgbasf p Base SymGrp N p : N N
32 31 adantl R CRing m B p Base SymGrp N p : N N
33 32 ffvelrnda R CRing m B p Base SymGrp N c N p c N
34 simpr R CRing m B p Base SymGrp N c N c N
35 30 33 34 fovrnd R CRing m B p Base SymGrp N c N p c m c K
36 35 ralrimiva R CRing m B p Base SymGrp N c N p c m c K
37 20 25 26 36 gsummptcl R CRing m B p Base SymGrp N mulGrp R c N p c m c K
38 eqid R = R
39 4 38 ringcl R Ring ℤRHom R pmSgn N p K mulGrp R c N p c m c K ℤRHom R pmSgn N p R mulGrp R c N p c m c K
40 16 23 37 39 syl3anc R CRing m B p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c m c K
41 40 ralrimiva R CRing m B p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c m c K
42 4 8 15 41 gsummptcl R CRing m B R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c m c K
43 eqid ℤRHom R = ℤRHom R
44 eqid pmSgn N = pmSgn N
45 1 2 3 13 43 44 38 19 mdetfval D = m B R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c m c
46 42 45 fmptd R CRing D : B K