Step |
Hyp |
Ref |
Expression |
1 |
|
mdetf.d |
|
2 |
|
mdetf.a |
|
3 |
|
mdetf.b |
|
4 |
|
mdetf.k |
|
5 |
|
crngring |
|
6 |
5
|
adantr |
|
7 |
|
ringcmn |
|
8 |
6 7
|
syl |
|
9 |
2 3
|
matrcl |
|
10 |
9
|
adantl |
|
11 |
10
|
simpld |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
symgbasfi |
|
15 |
11 14
|
syl |
|
16 |
5
|
ad2antrr |
|
17 |
|
zrhpsgnmhm |
|
18 |
6 11 17
|
syl2anc |
|
19 |
|
eqid |
|
20 |
19 4
|
mgpbas |
|
21 |
13 20
|
mhmf |
|
22 |
18 21
|
syl |
|
23 |
22
|
ffvelrnda |
|
24 |
19
|
crngmgp |
|
25 |
24
|
ad2antrr |
|
26 |
11
|
adantr |
|
27 |
2 4 3
|
matbas2i |
|
28 |
27
|
ad3antlr |
|
29 |
|
elmapi |
|
30 |
28 29
|
syl |
|
31 |
12 13
|
symgbasf |
|
32 |
31
|
adantl |
|
33 |
32
|
ffvelrnda |
|
34 |
|
simpr |
|
35 |
30 33 34
|
fovrnd |
|
36 |
35
|
ralrimiva |
|
37 |
20 25 26 36
|
gsummptcl |
|
38 |
|
eqid |
|
39 |
4 38
|
ringcl |
|
40 |
16 23 37 39
|
syl3anc |
|
41 |
40
|
ralrimiva |
|
42 |
4 8 15 41
|
gsummptcl |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
1 2 3 13 43 44 38 19
|
mdetfval |
|
46 |
42 45
|
fmptd |
|