Step |
Hyp |
Ref |
Expression |
1 |
|
mdetfval.d |
|
2 |
|
mdetfval.a |
|
3 |
|
mdetfval.b |
|
4 |
|
mdetfval.p |
|
5 |
|
mdetfval.y |
|
6 |
|
mdetfval.s |
|
7 |
|
mdetfval.t |
|
8 |
|
mdetfval.u |
|
9 |
1 2 3 4 5 6 7 8
|
mdetleib |
|
10 |
9
|
adantl |
|
11 |
|
eqid |
|
12 |
|
crngring |
|
13 |
|
ringcmn |
|
14 |
12 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
2 3
|
matrcl |
|
17 |
16
|
adantl |
|
18 |
17
|
simpld |
|
19 |
|
eqid |
|
20 |
19 4
|
symgbasfi |
|
21 |
18 20
|
syl |
|
22 |
12
|
ad2antrr |
|
23 |
5 6
|
coeq12i |
|
24 |
|
zrhpsgnmhm |
|
25 |
23 24
|
eqeltrid |
|
26 |
12 18 25
|
syl2an2r |
|
27 |
|
eqid |
|
28 |
27 11
|
mgpbas |
|
29 |
4 28
|
mhmf |
|
30 |
26 29
|
syl |
|
31 |
30
|
ffvelrnda |
|
32 |
8 11
|
mgpbas |
|
33 |
8
|
crngmgp |
|
34 |
33
|
ad2antrr |
|
35 |
18
|
adantr |
|
36 |
|
simpr |
|
37 |
2 11 3
|
matbas2i |
|
38 |
|
elmapi |
|
39 |
36 37 38
|
3syl |
|
40 |
39
|
ad2antrr |
|
41 |
19 4
|
symgbasf1o |
|
42 |
41
|
adantl |
|
43 |
|
f1of |
|
44 |
42 43
|
syl |
|
45 |
44
|
ffvelrnda |
|
46 |
|
simpr |
|
47 |
40 45 46
|
fovrnd |
|
48 |
47
|
ralrimiva |
|
49 |
32 34 35 48
|
gsummptcl |
|
50 |
11 7
|
ringcl |
|
51 |
22 31 49 50
|
syl3anc |
|
52 |
51
|
ralrimiva |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
19
|
symggrp |
|
56 |
18 55
|
syl |
|
57 |
4 54 56
|
grpinvf1o |
|
58 |
11 15 21 52 53 57
|
gsummptfif1o |
|
59 |
|
f1of |
|
60 |
57 59
|
syl |
|
61 |
60
|
ffvelrnda |
|
62 |
60
|
feqmptd |
|
63 |
|
eqidd |
|
64 |
|
fveq2 |
|
65 |
|
fveq1 |
|
66 |
65
|
oveq1d |
|
67 |
66
|
mpteq2dv |
|
68 |
67
|
oveq2d |
|
69 |
64 68
|
oveq12d |
|
70 |
61 62 63 69
|
fmptco |
|
71 |
19 4 54
|
symginv |
|
72 |
71
|
adantl |
|
73 |
72
|
fveq2d |
|
74 |
12
|
ad2antrr |
|
75 |
18
|
adantr |
|
76 |
|
simpr |
|
77 |
4 5 6
|
zrhpsgninv |
|
78 |
74 75 76 77
|
syl3anc |
|
79 |
73 78
|
eqtrd |
|
80 |
|
eqid |
|
81 |
33
|
ad2antrr |
|
82 |
39
|
ad2antrr |
|
83 |
71
|
ad2antlr |
|
84 |
83
|
fveq1d |
|
85 |
19 4
|
symgbasf1o |
|
86 |
85
|
adantl |
|
87 |
|
f1ocnv |
|
88 |
|
f1of |
|
89 |
86 87 88
|
3syl |
|
90 |
89
|
ffvelrnda |
|
91 |
84 90
|
eqeltrd |
|
92 |
|
simpr |
|
93 |
82 91 92
|
fovrnd |
|
94 |
93 32
|
eleqtrdi |
|
95 |
94
|
ralrimiva |
|
96 |
|
eqid |
|
97 |
80 81 75 95 96 86
|
gsummptfif1o |
|
98 |
|
f1of |
|
99 |
86 98
|
syl |
|
100 |
99
|
ffvelrnda |
|
101 |
99
|
feqmptd |
|
102 |
|
eqidd |
|
103 |
|
fveq2 |
|
104 |
|
id |
|
105 |
103 104
|
oveq12d |
|
106 |
100 101 102 105
|
fmptco |
|
107 |
71
|
ad2antlr |
|
108 |
107
|
fveq1d |
|
109 |
|
f1ocnvfv1 |
|
110 |
86 109
|
sylan |
|
111 |
108 110
|
eqtrd |
|
112 |
111
|
oveq1d |
|
113 |
112
|
mpteq2dva |
|
114 |
106 113
|
eqtrd |
|
115 |
114
|
oveq2d |
|
116 |
97 115
|
eqtrd |
|
117 |
79 116
|
oveq12d |
|
118 |
117
|
mpteq2dva |
|
119 |
70 118
|
eqtrd |
|
120 |
119
|
oveq2d |
|
121 |
10 58 120
|
3eqtrd |
|