Metamath Proof Explorer


Theorem mdetmul

Description: Multiplicativity of the determinant function: the determinant of a matrix product of square matrices equals the product of their determinants. Proposition 4.15 in Lang p. 517. (Contributed by Stefan O'Rear, 16-Jul-2018)

Ref Expression
Hypotheses mdetmul.a A = N Mat R
mdetmul.b B = Base A
mdetmul.d D = N maDet R
mdetmul.t1 · ˙ = R
mdetmul.t2 ˙ = A
Assertion mdetmul R CRing F B G B D F ˙ G = D F · ˙ D G

Proof

Step Hyp Ref Expression
1 mdetmul.a A = N Mat R
2 mdetmul.b B = Base A
3 mdetmul.d D = N maDet R
4 mdetmul.t1 · ˙ = R
5 mdetmul.t2 ˙ = A
6 eqid Base R = Base R
7 eqid 0 R = 0 R
8 eqid 1 R = 1 R
9 eqid + R = + R
10 1 2 matrcl F B N Fin R V
11 10 simpld F B N Fin
12 11 3ad2ant2 R CRing F B G B N Fin
13 crngring R CRing R Ring
14 13 3ad2ant1 R CRing F B G B R Ring
15 3 1 2 6 mdetf R CRing D : B Base R
16 15 3ad2ant1 R CRing F B G B D : B Base R
17 16 adantr R CRing F B G B a B D : B Base R
18 1 matring N Fin R Ring A Ring
19 12 14 18 syl2anc R CRing F B G B A Ring
20 19 adantr R CRing F B G B a B A Ring
21 simpr R CRing F B G B a B a B
22 simpl3 R CRing F B G B a B G B
23 2 5 ringcl A Ring a B G B a ˙ G B
24 20 21 22 23 syl3anc R CRing F B G B a B a ˙ G B
25 17 24 ffvelrnd R CRing F B G B a B D a ˙ G Base R
26 25 fmpttd R CRing F B G B a B D a ˙ G : B Base R
27 simp21 R CRing F B G B b B c N d N c d e N c b e = d b e b B
28 fvoveq1 a = b D a ˙ G = D b ˙ G
29 eqid a B D a ˙ G = a B D a ˙ G
30 fvex D b ˙ G V
31 28 29 30 fvmpt b B a B D a ˙ G b = D b ˙ G
32 27 31 syl R CRing F B G B b B c N d N c d e N c b e = d b e a B D a ˙ G b = D b ˙ G
33 simp11 R CRing F B G B b B c N d N c d e N c b e = d b e R CRing
34 19 adantr R CRing F B G B b B c N d N A Ring
35 simpr1 R CRing F B G B b B c N d N b B
36 simpl3 R CRing F B G B b B c N d N G B
37 2 5 ringcl A Ring b B G B b ˙ G B
38 34 35 36 37 syl3anc R CRing F B G B b B c N d N b ˙ G B
39 38 3adant3 R CRing F B G B b B c N d N c d e N c b e = d b e b ˙ G B
40 simp22 R CRing F B G B b B c N d N c d e N c b e = d b e c N
41 simp23 R CRing F B G B b B c N d N c d e N c b e = d b e d N
42 simp3l R CRing F B G B b B c N d N c d e N c b e = d b e c d
43 simpl3r R CRing F B G B b B c N d N c d e N c b e = d b e a N e N c b e = d b e
44 eqid N = N
45 oveq1 c b e = d b e c b e · ˙ e G a = d b e · ˙ e G a
46 45 ralimi e N c b e = d b e e N c b e · ˙ e G a = d b e · ˙ e G a
47 mpteq12 N = N e N c b e · ˙ e G a = d b e · ˙ e G a e N c b e · ˙ e G a = e N d b e · ˙ e G a
48 44 46 47 sylancr e N c b e = d b e e N c b e · ˙ e G a = e N d b e · ˙ e G a
49 48 oveq2d e N c b e = d b e R e N c b e · ˙ e G a = R e N d b e · ˙ e G a
50 43 49 syl R CRing F B G B b B c N d N c d e N c b e = d b e a N R e N c b e · ˙ e G a = R e N d b e · ˙ e G a
51 simp1 R CRing F B G B R CRing
52 eqid R maMul N N N = R maMul N N N
53 1 52 matmulr N Fin R CRing R maMul N N N = A
54 53 5 eqtr4di N Fin R CRing R maMul N N N = ˙
55 12 51 54 syl2anc R CRing F B G B R maMul N N N = ˙
56 55 ad2antrr R CRing F B G B b B c N d N a N R maMul N N N = ˙
57 56 oveqd R CRing F B G B b B c N d N a N b R maMul N N N G = b ˙ G
58 57 oveqd R CRing F B G B b B c N d N a N c b R maMul N N N G a = c b ˙ G a
59 simpll1 R CRing F B G B b B c N d N a N R CRing
60 12 ad2antrr R CRing F B G B b B c N d N a N N Fin
61 simplr1 R CRing F B G B b B c N d N a N b B
62 1 6 2 matbas2i b B b Base R N × N
63 61 62 syl R CRing F B G B b B c N d N a N b Base R N × N
64 1 6 2 matbas2i G B G Base R N × N
65 64 3ad2ant3 R CRing F B G B G Base R N × N
66 65 ad2antrr R CRing F B G B b B c N d N a N G Base R N × N
67 simplr2 R CRing F B G B b B c N d N a N c N
68 simpr R CRing F B G B b B c N d N a N a N
69 52 6 4 59 60 60 60 63 66 67 68 mamufv R CRing F B G B b B c N d N a N c b R maMul N N N G a = R e N c b e · ˙ e G a
70 58 69 eqtr3d R CRing F B G B b B c N d N a N c b ˙ G a = R e N c b e · ˙ e G a
71 70 3adantl3 R CRing F B G B b B c N d N c d e N c b e = d b e a N c b ˙ G a = R e N c b e · ˙ e G a
72 57 oveqd R CRing F B G B b B c N d N a N d b R maMul N N N G a = d b ˙ G a
73 simplr3 R CRing F B G B b B c N d N a N d N
74 52 6 4 59 60 60 60 63 66 73 68 mamufv R CRing F B G B b B c N d N a N d b R maMul N N N G a = R e N d b e · ˙ e G a
75 72 74 eqtr3d R CRing F B G B b B c N d N a N d b ˙ G a = R e N d b e · ˙ e G a
76 75 3adantl3 R CRing F B G B b B c N d N c d e N c b e = d b e a N d b ˙ G a = R e N d b e · ˙ e G a
77 50 71 76 3eqtr4d R CRing F B G B b B c N d N c d e N c b e = d b e a N c b ˙ G a = d b ˙ G a
78 77 ralrimiva R CRing F B G B b B c N d N c d e N c b e = d b e a N c b ˙ G a = d b ˙ G a
79 3 1 2 7 33 39 40 41 42 78 mdetralt R CRing F B G B b B c N d N c d e N c b e = d b e D b ˙ G = 0 R
80 32 79 eqtrd R CRing F B G B b B c N d N c d e N c b e = d b e a B D a ˙ G b = 0 R
81 80 3expia R CRing F B G B b B c N d N c d e N c b e = d b e a B D a ˙ G b = 0 R
82 81 ralrimivvva R CRing F B G B b B c N d N c d e N c b e = d b e a B D a ˙ G b = 0 R
83 simp11 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N R CRing
84 19 adantr R CRing F B G B b B c B d B e N A Ring
85 simprll R CRing F B G B b B c B d B e N b B
86 simpl3 R CRing F B G B b B c B d B e N G B
87 84 85 86 37 syl3anc R CRing F B G B b B c B d B e N b ˙ G B
88 87 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G B
89 simprlr R CRing F B G B b B c B d B e N c B
90 2 5 ringcl A Ring c B G B c ˙ G B
91 84 89 86 90 syl3anc R CRing F B G B b B c B d B e N c ˙ G B
92 91 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N c ˙ G B
93 simprrl R CRing F B G B b B c B d B e N d B
94 2 5 ringcl A Ring d B G B d ˙ G B
95 84 93 86 94 syl3anc R CRing F B G B b B c B d B e N d ˙ G B
96 95 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N d ˙ G B
97 simp2rr R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N e N
98 simp31 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b e × N = c e × N + R f d e × N
99 98 oveq1d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b e × N R maMul e N N G = c e × N + R f d e × N R maMul e N N G
100 14 adantr R CRing F B G B b B c B d B e N R Ring
101 eqid R maMul e N N = R maMul e N N
102 snfi e Fin
103 102 a1i R CRing F B G B b B c B d B e N e Fin
104 12 adantr R CRing F B G B b B c B d B e N N Fin
105 1 6 2 matbas2i c B c Base R N × N
106 89 105 syl R CRing F B G B b B c B d B e N c Base R N × N
107 simprrr R CRing F B G B b B c B d B e N e N
108 107 snssd R CRing F B G B b B c B d B e N e N
109 xpss1 e N e × N N × N
110 108 109 syl R CRing F B G B b B c B d B e N e × N N × N
111 elmapssres c Base R N × N e × N N × N c e × N Base R e × N
112 106 110 111 syl2anc R CRing F B G B b B c B d B e N c e × N Base R e × N
113 1 6 2 matbas2i d B d Base R N × N
114 93 113 syl R CRing F B G B b B c B d B e N d Base R N × N
115 elmapssres d Base R N × N e × N N × N d e × N Base R e × N
116 114 110 115 syl2anc R CRing F B G B b B c B d B e N d e × N Base R e × N
117 65 adantr R CRing F B G B b B c B d B e N G Base R N × N
118 6 100 101 103 104 104 9 112 116 117 mamudi R CRing F B G B b B c B d B e N c e × N + R f d e × N R maMul e N N G = c e × N R maMul e N N G + R f d e × N R maMul e N N G
119 118 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N c e × N + R f d e × N R maMul e N N G = c e × N R maMul e N N G + R f d e × N R maMul e N N G
120 99 119 eqtrd R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b e × N R maMul e N N G = c e × N R maMul e N N G + R f d e × N R maMul e N N G
121 55 adantr R CRing F B G B b B c B d B e N R maMul N N N = ˙
122 121 oveqd R CRing F B G B b B c B d B e N b R maMul N N N G = b ˙ G
123 122 reseq1d R CRing F B G B b B c B d B e N b R maMul N N N G e × N = b ˙ G e × N
124 simpl1 R CRing F B G B b B c B d B e N R CRing
125 85 62 syl R CRing F B G B b B c B d B e N b Base R N × N
126 52 101 6 124 104 104 104 108 125 117 mamures R CRing F B G B b B c B d B e N b R maMul N N N G e × N = b e × N R maMul e N N G
127 123 126 eqtr3d R CRing F B G B b B c B d B e N b ˙ G e × N = b e × N R maMul e N N G
128 127 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G e × N = b e × N R maMul e N N G
129 121 oveqd R CRing F B G B b B c B d B e N c R maMul N N N G = c ˙ G
130 129 reseq1d R CRing F B G B b B c B d B e N c R maMul N N N G e × N = c ˙ G e × N
131 52 101 6 124 104 104 104 108 106 117 mamures R CRing F B G B b B c B d B e N c R maMul N N N G e × N = c e × N R maMul e N N G
132 130 131 eqtr3d R CRing F B G B b B c B d B e N c ˙ G e × N = c e × N R maMul e N N G
133 121 oveqd R CRing F B G B b B c B d B e N d R maMul N N N G = d ˙ G
134 133 reseq1d R CRing F B G B b B c B d B e N d R maMul N N N G e × N = d ˙ G e × N
135 52 101 6 124 104 104 104 108 114 117 mamures R CRing F B G B b B c B d B e N d R maMul N N N G e × N = d e × N R maMul e N N G
136 134 135 eqtr3d R CRing F B G B b B c B d B e N d ˙ G e × N = d e × N R maMul e N N G
137 132 136 oveq12d R CRing F B G B b B c B d B e N c ˙ G e × N + R f d ˙ G e × N = c e × N R maMul e N N G + R f d e × N R maMul e N N G
138 137 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N c ˙ G e × N + R f d ˙ G e × N = c e × N R maMul e N N G + R f d e × N R maMul e N N G
139 120 128 138 3eqtr4d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G e × N = c ˙ G e × N + R f d ˙ G e × N
140 simp32 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b N e × N = c N e × N
141 140 oveq1d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b N e × N R maMul N e N N G = c N e × N R maMul N e N N G
142 122 reseq1d R CRing F B G B b B c B d B e N b R maMul N N N G N e × N = b ˙ G N e × N
143 eqid R maMul N e N N = R maMul N e N N
144 difssd R CRing F B G B b B c B d B e N N e N
145 52 143 6 124 104 104 104 144 125 117 mamures R CRing F B G B b B c B d B e N b R maMul N N N G N e × N = b N e × N R maMul N e N N G
146 142 145 eqtr3d R CRing F B G B b B c B d B e N b ˙ G N e × N = b N e × N R maMul N e N N G
147 146 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G N e × N = b N e × N R maMul N e N N G
148 129 reseq1d R CRing F B G B b B c B d B e N c R maMul N N N G N e × N = c ˙ G N e × N
149 52 143 6 124 104 104 104 144 106 117 mamures R CRing F B G B b B c B d B e N c R maMul N N N G N e × N = c N e × N R maMul N e N N G
150 148 149 eqtr3d R CRing F B G B b B c B d B e N c ˙ G N e × N = c N e × N R maMul N e N N G
151 150 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N c ˙ G N e × N = c N e × N R maMul N e N N G
152 141 147 151 3eqtr4d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G N e × N = c ˙ G N e × N
153 simp33 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b N e × N = d N e × N
154 153 oveq1d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b N e × N R maMul N e N N G = d N e × N R maMul N e N N G
155 133 reseq1d R CRing F B G B b B c B d B e N d R maMul N N N G N e × N = d ˙ G N e × N
156 52 143 6 124 104 104 104 144 114 117 mamures R CRing F B G B b B c B d B e N d R maMul N N N G N e × N = d N e × N R maMul N e N N G
157 155 156 eqtr3d R CRing F B G B b B c B d B e N d ˙ G N e × N = d N e × N R maMul N e N N G
158 157 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N d ˙ G N e × N = d N e × N R maMul N e N N G
159 154 147 158 3eqtr4d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N b ˙ G N e × N = d ˙ G N e × N
160 3 1 2 9 83 88 92 96 97 139 152 159 mdetrlin R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N D b ˙ G = D c ˙ G + R D d ˙ G
161 85 31 syl R CRing F B G B b B c B d B e N a B D a ˙ G b = D b ˙ G
162 161 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = D b ˙ G
163 fvoveq1 a = c D a ˙ G = D c ˙ G
164 fvex D c ˙ G V
165 163 29 164 fvmpt c B a B D a ˙ G c = D c ˙ G
166 89 165 syl R CRing F B G B b B c B d B e N a B D a ˙ G c = D c ˙ G
167 fvoveq1 a = d D a ˙ G = D d ˙ G
168 fvex D d ˙ G V
169 167 29 168 fvmpt d B a B D a ˙ G d = D d ˙ G
170 93 169 syl R CRing F B G B b B c B d B e N a B D a ˙ G d = D d ˙ G
171 166 170 oveq12d R CRing F B G B b B c B d B e N a B D a ˙ G c + R a B D a ˙ G d = D c ˙ G + R D d ˙ G
172 171 3adant3 R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G c + R a B D a ˙ G d = D c ˙ G + R D d ˙ G
173 160 162 172 3eqtr4d R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = a B D a ˙ G c + R a B D a ˙ G d
174 173 3expia R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = a B D a ˙ G c + R a B D a ˙ G d
175 174 anassrs R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = a B D a ˙ G c + R a B D a ˙ G d
176 175 ralrimivva R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = a B D a ˙ G c + R a B D a ˙ G d
177 176 ralrimivva R CRing F B G B b B c B d B e N b e × N = c e × N + R f d e × N b N e × N = c N e × N b N e × N = d N e × N a B D a ˙ G b = a B D a ˙ G c + R a B D a ˙ G d
178 simp11 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N R CRing
179 19 adantr R CRing F B G B b B c Base R d B e N A Ring
180 simprll R CRing F B G B b B c Base R d B e N b B
181 simpl3 R CRing F B G B b B c Base R d B e N G B
182 179 180 181 37 syl3anc R CRing F B G B b B c Base R d B e N b ˙ G B
183 182 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b ˙ G B
184 simp2lr R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N c Base R
185 simprrl R CRing F B G B b B c Base R d B e N d B
186 179 185 181 94 syl3anc R CRing F B G B b B c Base R d B e N d ˙ G B
187 186 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N d ˙ G B
188 simp2rr R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N e N
189 simp3l R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b e × N = e × N × c · ˙ f d e × N
190 189 oveq1d R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b e × N R maMul e N N G = e × N × c · ˙ f d e × N R maMul e N N G
191 55 adantr R CRing F B G B b B c Base R d B e N R maMul N N N = ˙
192 191 oveqd R CRing F B G B b B c Base R d B e N b R maMul N N N G = b ˙ G
193 192 reseq1d R CRing F B G B b B c Base R d B e N b R maMul N N N G e × N = b ˙ G e × N
194 simpl1 R CRing F B G B b B c Base R d B e N R CRing
195 12 adantr R CRing F B G B b B c Base R d B e N N Fin
196 simprrr R CRing F B G B b B c Base R d B e N e N
197 196 snssd R CRing F B G B b B c Base R d B e N e N
198 180 62 syl R CRing F B G B b B c Base R d B e N b Base R N × N
199 65 adantr R CRing F B G B b B c Base R d B e N G Base R N × N
200 52 101 6 194 195 195 195 197 198 199 mamures R CRing F B G B b B c Base R d B e N b R maMul N N N G e × N = b e × N R maMul e N N G
201 193 200 eqtr3d R CRing F B G B b B c Base R d B e N b ˙ G e × N = b e × N R maMul e N N G
202 201 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b ˙ G e × N = b e × N R maMul e N N G
203 191 oveqd R CRing F B G B b B c Base R d B e N d R maMul N N N G = d ˙ G
204 203 reseq1d R CRing F B G B b B c Base R d B e N d R maMul N N N G e × N = d ˙ G e × N
205 185 113 syl R CRing F B G B b B c Base R d B e N d Base R N × N
206 52 101 6 194 195 195 195 197 205 199 mamures R CRing F B G B b B c Base R d B e N d R maMul N N N G e × N = d e × N R maMul e N N G
207 204 206 eqtr3d R CRing F B G B b B c Base R d B e N d ˙ G e × N = d e × N R maMul e N N G
208 207 oveq2d R CRing F B G B b B c Base R d B e N e × N × c · ˙ f d ˙ G e × N = e × N × c · ˙ f d e × N R maMul e N N G
209 14 adantr R CRing F B G B b B c Base R d B e N R Ring
210 102 a1i R CRing F B G B b B c Base R d B e N e Fin
211 simprlr R CRing F B G B b B c Base R d B e N c Base R
212 197 109 syl R CRing F B G B b B c Base R d B e N e × N N × N
213 205 212 115 syl2anc R CRing F B G B b B c Base R d B e N d e × N Base R e × N
214 6 209 101 210 195 195 4 211 213 199 mamuvs1 R CRing F B G B b B c Base R d B e N e × N × c · ˙ f d e × N R maMul e N N G = e × N × c · ˙ f d e × N R maMul e N N G
215 208 214 eqtr4d R CRing F B G B b B c Base R d B e N e × N × c · ˙ f d ˙ G e × N = e × N × c · ˙ f d e × N R maMul e N N G
216 215 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N e × N × c · ˙ f d ˙ G e × N = e × N × c · ˙ f d e × N R maMul e N N G
217 190 202 216 3eqtr4d R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b ˙ G e × N = e × N × c · ˙ f d ˙ G e × N
218 simp3r R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b N e × N = d N e × N
219 218 oveq1d R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b N e × N R maMul N e N N G = d N e × N R maMul N e N N G
220 192 reseq1d R CRing F B G B b B c Base R d B e N b R maMul N N N G N e × N = b ˙ G N e × N
221 difssd R CRing F B G B b B c Base R d B e N N e N
222 52 143 6 194 195 195 195 221 198 199 mamures R CRing F B G B b B c Base R d B e N b R maMul N N N G N e × N = b N e × N R maMul N e N N G
223 220 222 eqtr3d R CRing F B G B b B c Base R d B e N b ˙ G N e × N = b N e × N R maMul N e N N G
224 223 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b ˙ G N e × N = b N e × N R maMul N e N N G
225 203 reseq1d R CRing F B G B b B c Base R d B e N d R maMul N N N G N e × N = d ˙ G N e × N
226 52 143 6 194 195 195 195 221 205 199 mamures R CRing F B G B b B c Base R d B e N d R maMul N N N G N e × N = d N e × N R maMul N e N N G
227 225 226 eqtr3d R CRing F B G B b B c Base R d B e N d ˙ G N e × N = d N e × N R maMul N e N N G
228 227 3adant3 R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N d ˙ G N e × N = d N e × N R maMul N e N N G
229 219 224 228 3eqtr4d R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b ˙ G N e × N = d ˙ G N e × N
230 3 1 2 6 4 178 183 184 187 188 217 229 mdetrsca R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N D b ˙ G = c · ˙ D d ˙ G
231 simp2ll R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N b B
232 231 31 syl R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = D b ˙ G
233 simp2rl R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N d B
234 169 oveq2d d B c · ˙ a B D a ˙ G d = c · ˙ D d ˙ G
235 233 234 syl R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N c · ˙ a B D a ˙ G d = c · ˙ D d ˙ G
236 230 232 235 3eqtr4d R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = c · ˙ a B D a ˙ G d
237 236 3expia R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = c · ˙ a B D a ˙ G d
238 237 anassrs R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = c · ˙ a B D a ˙ G d
239 238 ralrimivva R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = c · ˙ a B D a ˙ G d
240 239 ralrimivva R CRing F B G B b B c Base R d B e N b e × N = e × N × c · ˙ f d e × N b N e × N = d N e × N a B D a ˙ G b = c · ˙ a B D a ˙ G d
241 simp2 R CRing F B G B F B
242 1 2 6 7 8 9 4 12 14 26 82 177 240 3 51 241 mdetuni0 R CRing F B G B a B D a ˙ G F = a B D a ˙ G 1 A · ˙ D F
243 fvoveq1 a = F D a ˙ G = D F ˙ G
244 fvex D F ˙ G V
245 243 29 244 fvmpt F B a B D a ˙ G F = D F ˙ G
246 245 3ad2ant2 R CRing F B G B a B D a ˙ G F = D F ˙ G
247 eqid 1 A = 1 A
248 2 247 ringidcl A Ring 1 A B
249 fvoveq1 a = 1 A D a ˙ G = D 1 A ˙ G
250 fvex D 1 A ˙ G V
251 249 29 250 fvmpt 1 A B a B D a ˙ G 1 A = D 1 A ˙ G
252 19 248 251 3syl R CRing F B G B a B D a ˙ G 1 A = D 1 A ˙ G
253 simp3 R CRing F B G B G B
254 2 5 247 ringlidm A Ring G B 1 A ˙ G = G
255 19 253 254 syl2anc R CRing F B G B 1 A ˙ G = G
256 255 fveq2d R CRing F B G B D 1 A ˙ G = D G
257 252 256 eqtrd R CRing F B G B a B D a ˙ G 1 A = D G
258 257 oveq1d R CRing F B G B a B D a ˙ G 1 A · ˙ D F = D G · ˙ D F
259 16 253 ffvelrnd R CRing F B G B D G Base R
260 16 241 ffvelrnd R CRing F B G B D F Base R
261 6 4 crngcom R CRing D G Base R D F Base R D G · ˙ D F = D F · ˙ D G
262 51 259 260 261 syl3anc R CRing F B G B D G · ˙ D F = D F · ˙ D G
263 258 262 eqtrd R CRing F B G B a B D a ˙ G 1 A · ˙ D F = D F · ˙ D G
264 242 246 263 3eqtr3d R CRing F B G B D F ˙ G = D F · ˙ D G