| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetr0.d |  | 
						
							| 2 |  | mdetr0.k |  | 
						
							| 3 |  | mdetr0.z |  | 
						
							| 4 |  | mdetr0.r |  | 
						
							| 5 |  | mdetr0.n |  | 
						
							| 6 |  | mdetr0.x |  | 
						
							| 7 |  | mdetr0.i |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | crngring |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 | 2 3 | ring0cl |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 12 | 3ad2ant1 |  | 
						
							| 14 | 1 2 8 4 5 13 6 12 7 | mdetrsca2 |  | 
						
							| 15 | 2 8 3 | ringlz |  | 
						
							| 16 | 10 12 15 | syl2anc |  | 
						
							| 17 | 16 | ifeq1d |  | 
						
							| 18 | 17 | mpoeq3dv |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 1 20 21 2 | mdetf |  | 
						
							| 23 | 4 22 | syl |  | 
						
							| 24 | 13 6 | ifcld |  | 
						
							| 25 | 20 2 21 5 4 24 | matbas2d |  | 
						
							| 26 | 23 25 | ffvelcdmd |  | 
						
							| 27 | 2 8 3 | ringlz |  | 
						
							| 28 | 10 26 27 | syl2anc |  | 
						
							| 29 | 14 19 28 | 3eqtr3d |  |