Step |
Hyp |
Ref |
Expression |
1 |
|
mdetr0.d |
|
2 |
|
mdetr0.k |
|
3 |
|
mdetr0.z |
|
4 |
|
mdetr0.r |
|
5 |
|
mdetr0.n |
|
6 |
|
mdetr0.x |
|
7 |
|
mdetr0.i |
|
8 |
|
eqid |
|
9 |
|
crngring |
|
10 |
4 9
|
syl |
|
11 |
2 3
|
ring0cl |
|
12 |
10 11
|
syl |
|
13 |
12
|
3ad2ant1 |
|
14 |
1 2 8 4 5 13 6 12 7
|
mdetrsca2 |
|
15 |
2 8 3
|
ringlz |
|
16 |
10 12 15
|
syl2anc |
|
17 |
16
|
ifeq1d |
|
18 |
17
|
mpoeq3dv |
|
19 |
18
|
fveq2d |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
1 20 21 2
|
mdetf |
|
23 |
4 22
|
syl |
|
24 |
13 6
|
ifcld |
|
25 |
20 2 21 5 4 24
|
matbas2d |
|
26 |
23 25
|
ffvelrnd |
|
27 |
2 8 3
|
ringlz |
|
28 |
10 26 27
|
syl2anc |
|
29 |
14 19 28
|
3eqtr3d |
|