Step |
Hyp |
Ref |
Expression |
1 |
|
mdetralt2.d |
|
2 |
|
mdetralt2.k |
|
3 |
|
mdetralt2.z |
|
4 |
|
mdetralt2.r |
|
5 |
|
mdetralt2.n |
|
6 |
|
mdetralt2.x |
|
7 |
|
mdetralt2.y |
|
8 |
|
mdetralt2.i |
|
9 |
|
mdetralt2.j |
|
10 |
|
mdetralt2.ij |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
6
|
3adant2 |
|
14 |
13 7
|
ifcld |
|
15 |
13 14
|
ifcld |
|
16 |
11 2 12 5 4 15
|
matbas2d |
|
17 |
|
eqidd |
|
18 |
|
iftrue |
|
19 |
18
|
ad2antrl |
|
20 |
|
csbeq1a |
|
21 |
20
|
ad2antll |
|
22 |
19 21
|
eqtrd |
|
23 |
|
eqidd |
|
24 |
8
|
adantr |
|
25 |
|
simpr |
|
26 |
|
nfv |
|
27 |
|
nfcsb1v |
|
28 |
27
|
nfel1 |
|
29 |
26 28
|
nfim |
|
30 |
|
eleq1w |
|
31 |
30
|
anbi2d |
|
32 |
20
|
eleq1d |
|
33 |
31 32
|
imbi12d |
|
34 |
29 33 6
|
chvarfv |
|
35 |
|
nfv |
|
36 |
|
nfcv |
|
37 |
|
nfcv |
|
38 |
|
nfcv |
|
39 |
17 22 23 24 25 34 35 26 36 37 38 27
|
ovmpodxf |
|
40 |
|
iftrue |
|
41 |
40
|
ifeq2d |
|
42 |
|
ifid |
|
43 |
41 42
|
eqtrdi |
|
44 |
43
|
ad2antrl |
|
45 |
20
|
ad2antll |
|
46 |
44 45
|
eqtrd |
|
47 |
|
eqidd |
|
48 |
9
|
adantr |
|
49 |
|
nfcv |
|
50 |
17 46 47 48 25 34 35 26 49 37 38 27
|
ovmpodxf |
|
51 |
39 50
|
eqtr4d |
|
52 |
51
|
ralrimiva |
|
53 |
1 11 12 3 4 16 8 9 10 52
|
mdetralt |
|