Metamath Proof Explorer


Theorem mdetrlin

Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetrlin.d D = N maDet R
mdetrlin.a A = N Mat R
mdetrlin.b B = Base A
mdetrlin.p + ˙ = + R
mdetrlin.r φ R CRing
mdetrlin.x φ X B
mdetrlin.y φ Y B
mdetrlin.z φ Z B
mdetrlin.i φ I N
mdetrlin.eq φ X I × N = Y I × N + ˙ f Z I × N
mdetrlin.ne1 φ X N I × N = Y N I × N
mdetrlin.ne2 φ X N I × N = Z N I × N
Assertion mdetrlin φ D X = D Y + ˙ D Z

Proof

Step Hyp Ref Expression
1 mdetrlin.d D = N maDet R
2 mdetrlin.a A = N Mat R
3 mdetrlin.b B = Base A
4 mdetrlin.p + ˙ = + R
5 mdetrlin.r φ R CRing
6 mdetrlin.x φ X B
7 mdetrlin.y φ Y B
8 mdetrlin.z φ Z B
9 mdetrlin.i φ I N
10 mdetrlin.eq φ X I × N = Y I × N + ˙ f Z I × N
11 mdetrlin.ne1 φ X N I × N = Y N I × N
12 mdetrlin.ne2 φ X N I × N = Z N I × N
13 fvex Base SymGrp N V
14 ovex ℤRHom R pmSgn N p R mulGrp R r N r Y p r V
15 eqid p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r
16 14 15 fnmpti p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r Fn Base SymGrp N
17 ovex ℤRHom R pmSgn N p R mulGrp R r N r Z p r V
18 eqid p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
19 17 18 fnmpti p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r Fn Base SymGrp N
20 ofmpteq Base SymGrp N V p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r Fn Base SymGrp N p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r Fn Base SymGrp N p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ f p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r
21 13 16 19 20 mp3an p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ f p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r
22 crngring R CRing R Ring
23 5 22 syl φ R Ring
24 23 adantr φ p Base SymGrp N R Ring
25 2 3 matrcl Y B N Fin R V
26 7 25 syl φ N Fin R V
27 26 simpld φ N Fin
28 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
29 23 27 28 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
30 eqid Base SymGrp N = Base SymGrp N
31 eqid mulGrp R = mulGrp R
32 eqid Base R = Base R
33 31 32 mgpbas Base R = Base mulGrp R
34 30 33 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N Base R
35 29 34 syl φ ℤRHom R pmSgn N : Base SymGrp N Base R
36 35 ffvelrnda φ p Base SymGrp N ℤRHom R pmSgn N p Base R
37 31 crngmgp R CRing mulGrp R CMnd
38 5 37 syl φ mulGrp R CMnd
39 38 adantr φ p Base SymGrp N mulGrp R CMnd
40 27 adantr φ p Base SymGrp N N Fin
41 2 32 3 matbas2i Y B Y Base R N × N
42 elmapi Y Base R N × N Y : N × N Base R
43 7 41 42 3syl φ Y : N × N Base R
44 43 ad2antrr φ p Base SymGrp N r N Y : N × N Base R
45 simpr φ p Base SymGrp N r N r N
46 eqid SymGrp N = SymGrp N
47 46 30 symgbasf p Base SymGrp N p : N N
48 47 adantl φ p Base SymGrp N p : N N
49 48 ffvelrnda φ p Base SymGrp N r N p r N
50 44 45 49 fovrnd φ p Base SymGrp N r N r Y p r Base R
51 50 ralrimiva φ p Base SymGrp N r N r Y p r Base R
52 33 39 40 51 gsummptcl φ p Base SymGrp N mulGrp R r N r Y p r Base R
53 2 32 3 matbas2i Z B Z Base R N × N
54 elmapi Z Base R N × N Z : N × N Base R
55 8 53 54 3syl φ Z : N × N Base R
56 55 ad2antrr φ p Base SymGrp N r N Z : N × N Base R
57 56 45 49 fovrnd φ p Base SymGrp N r N r Z p r Base R
58 57 ralrimiva φ p Base SymGrp N r N r Z p r Base R
59 33 39 40 58 gsummptcl φ p Base SymGrp N mulGrp R r N r Z p r Base R
60 eqid R = R
61 32 4 60 ringdi R Ring ℤRHom R pmSgn N p Base R mulGrp R r N r Y p r Base R mulGrp R r N r Z p r Base R ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r
62 24 36 52 59 61 syl13anc φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r
63 cmnmnd mulGrp R CMnd mulGrp R Mnd
64 39 63 syl φ p Base SymGrp N mulGrp R Mnd
65 9 adantr φ p Base SymGrp N I N
66 43 adantr φ p Base SymGrp N Y : N × N Base R
67 48 65 ffvelrnd φ p Base SymGrp N p I N
68 66 65 67 fovrnd φ p Base SymGrp N I Y p I Base R
69 id r = I r = I
70 fveq2 r = I p r = p I
71 69 70 oveq12d r = I r Y p r = I Y p I
72 33 71 gsumsn mulGrp R Mnd I N I Y p I Base R mulGrp R r I r Y p r = I Y p I
73 64 65 68 72 syl3anc φ p Base SymGrp N mulGrp R r I r Y p r = I Y p I
74 73 68 eqeltrd φ p Base SymGrp N mulGrp R r I r Y p r Base R
75 55 adantr φ p Base SymGrp N Z : N × N Base R
76 75 65 67 fovrnd φ p Base SymGrp N I Z p I Base R
77 69 70 oveq12d r = I r Z p r = I Z p I
78 33 77 gsumsn mulGrp R Mnd I N I Z p I Base R mulGrp R r I r Z p r = I Z p I
79 64 65 76 78 syl3anc φ p Base SymGrp N mulGrp R r I r Z p r = I Z p I
80 79 76 eqeltrd φ p Base SymGrp N mulGrp R r I r Z p r Base R
81 difssd φ p Base SymGrp N N I N
82 40 81 ssfid φ p Base SymGrp N N I Fin
83 eldifi r N I r N
84 2 32 3 matbas2i X B X Base R N × N
85 elmapi X Base R N × N X : N × N Base R
86 6 84 85 3syl φ X : N × N Base R
87 86 ad2antrr φ p Base SymGrp N r N X : N × N Base R
88 87 45 49 fovrnd φ p Base SymGrp N r N r X p r Base R
89 83 88 sylan2 φ p Base SymGrp N r N I r X p r Base R
90 89 ralrimiva φ p Base SymGrp N r N I r X p r Base R
91 33 39 82 90 gsummptcl φ p Base SymGrp N mulGrp R r N I r X p r Base R
92 32 4 60 ringdir R Ring mulGrp R r I r Y p r Base R mulGrp R r I r Z p r Base R mulGrp R r N I r X p r Base R mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r = mulGrp R r I r Y p r R mulGrp R r N I r X p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r
93 24 74 80 91 92 syl13anc φ p Base SymGrp N mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r = mulGrp R r I r Y p r R mulGrp R r N I r X p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r
94 31 60 mgpplusg R = + mulGrp R
95 disjdif I N I =
96 95 a1i φ p Base SymGrp N I N I =
97 9 snssd φ I N
98 97 adantr φ p Base SymGrp N I N
99 undif I N I N I = N
100 98 99 sylib φ p Base SymGrp N I N I = N
101 100 eqcomd φ p Base SymGrp N N = I N I
102 33 94 39 40 88 96 101 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r X p r = mulGrp R r I r X p r R mulGrp R r N I r X p r
103 10 adantr φ p Base SymGrp N X I × N = Y I × N + ˙ f Z I × N
104 103 oveqd φ p Base SymGrp N I X I × N p I = I Y I × N + ˙ f Z I × N p I
105 xpss1 I N I × N N × N
106 98 105 syl φ p Base SymGrp N I × N N × N
107 66 106 fssresd φ p Base SymGrp N Y I × N : I × N Base R
108 107 ffnd φ p Base SymGrp N Y I × N Fn I × N
109 75 106 fssresd φ p Base SymGrp N Z I × N : I × N Base R
110 109 ffnd φ p Base SymGrp N Z I × N Fn I × N
111 snex I V
112 xpexg I V N Fin I × N V
113 111 40 112 sylancr φ p Base SymGrp N I × N V
114 snidg I N I I
115 65 114 syl φ p Base SymGrp N I I
116 115 67 opelxpd φ p Base SymGrp N I p I I × N
117 fnfvof Y I × N Fn I × N Z I × N Fn I × N I × N V I p I I × N Y I × N + ˙ f Z I × N I p I = Y I × N I p I + ˙ Z I × N I p I
118 108 110 113 116 117 syl22anc φ p Base SymGrp N Y I × N + ˙ f Z I × N I p I = Y I × N I p I + ˙ Z I × N I p I
119 df-ov I Y I × N + ˙ f Z I × N p I = Y I × N + ˙ f Z I × N I p I
120 df-ov I Y I × N p I = Y I × N I p I
121 df-ov I Z I × N p I = Z I × N I p I
122 120 121 oveq12i I Y I × N p I + ˙ I Z I × N p I = Y I × N I p I + ˙ Z I × N I p I
123 118 119 122 3eqtr4g φ p Base SymGrp N I Y I × N + ˙ f Z I × N p I = I Y I × N p I + ˙ I Z I × N p I
124 104 123 eqtrd φ p Base SymGrp N I X I × N p I = I Y I × N p I + ˙ I Z I × N p I
125 ovres I I p I N I X I × N p I = I X p I
126 115 67 125 syl2anc φ p Base SymGrp N I X I × N p I = I X p I
127 ovres I I p I N I Y I × N p I = I Y p I
128 115 67 127 syl2anc φ p Base SymGrp N I Y I × N p I = I Y p I
129 ovres I I p I N I Z I × N p I = I Z p I
130 115 67 129 syl2anc φ p Base SymGrp N I Z I × N p I = I Z p I
131 128 130 oveq12d φ p Base SymGrp N I Y I × N p I + ˙ I Z I × N p I = I Y p I + ˙ I Z p I
132 124 126 131 3eqtr3d φ p Base SymGrp N I X p I = I Y p I + ˙ I Z p I
133 86 adantr φ p Base SymGrp N X : N × N Base R
134 133 65 67 fovrnd φ p Base SymGrp N I X p I Base R
135 69 70 oveq12d r = I r X p r = I X p I
136 33 135 gsumsn mulGrp R Mnd I N I X p I Base R mulGrp R r I r X p r = I X p I
137 64 65 134 136 syl3anc φ p Base SymGrp N mulGrp R r I r X p r = I X p I
138 73 79 oveq12d φ p Base SymGrp N mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r = I Y p I + ˙ I Z p I
139 132 137 138 3eqtr4d φ p Base SymGrp N mulGrp R r I r X p r = mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r
140 139 oveq1d φ p Base SymGrp N mulGrp R r I r X p r R mulGrp R r N I r X p r = mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r
141 102 140 eqtrd φ p Base SymGrp N mulGrp R r N r X p r = mulGrp R r I r Y p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r
142 33 94 39 40 50 96 101 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r Y p r = mulGrp R r I r Y p r R mulGrp R r N I r Y p r
143 11 ad2antrr φ p Base SymGrp N r N I X N I × N = Y N I × N
144 143 oveqd φ p Base SymGrp N r N I r X N I × N p r = r Y N I × N p r
145 simpr φ p Base SymGrp N r N I r N I
146 83 49 sylan2 φ p Base SymGrp N r N I p r N
147 ovres r N I p r N r X N I × N p r = r X p r
148 145 146 147 syl2anc φ p Base SymGrp N r N I r X N I × N p r = r X p r
149 ovres r N I p r N r Y N I × N p r = r Y p r
150 145 146 149 syl2anc φ p Base SymGrp N r N I r Y N I × N p r = r Y p r
151 144 148 150 3eqtr3rd φ p Base SymGrp N r N I r Y p r = r X p r
152 151 mpteq2dva φ p Base SymGrp N r N I r Y p r = r N I r X p r
153 152 oveq2d φ p Base SymGrp N mulGrp R r N I r Y p r = mulGrp R r N I r X p r
154 153 oveq2d φ p Base SymGrp N mulGrp R r I r Y p r R mulGrp R r N I r Y p r = mulGrp R r I r Y p r R mulGrp R r N I r X p r
155 142 154 eqtrd φ p Base SymGrp N mulGrp R r N r Y p r = mulGrp R r I r Y p r R mulGrp R r N I r X p r
156 33 94 39 40 57 96 101 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r Z p r = mulGrp R r I r Z p r R mulGrp R r N I r Z p r
157 12 ad2antrr φ p Base SymGrp N r N I X N I × N = Z N I × N
158 157 oveqd φ p Base SymGrp N r N I r X N I × N p r = r Z N I × N p r
159 ovres r N I p r N r Z N I × N p r = r Z p r
160 145 146 159 syl2anc φ p Base SymGrp N r N I r Z N I × N p r = r Z p r
161 158 148 160 3eqtr3rd φ p Base SymGrp N r N I r Z p r = r X p r
162 161 mpteq2dva φ p Base SymGrp N r N I r Z p r = r N I r X p r
163 162 oveq2d φ p Base SymGrp N mulGrp R r N I r Z p r = mulGrp R r N I r X p r
164 163 oveq2d φ p Base SymGrp N mulGrp R r I r Z p r R mulGrp R r N I r Z p r = mulGrp R r I r Z p r R mulGrp R r N I r X p r
165 156 164 eqtrd φ p Base SymGrp N mulGrp R r N r Z p r = mulGrp R r I r Z p r R mulGrp R r N I r X p r
166 155 165 oveq12d φ p Base SymGrp N mulGrp R r N r Y p r + ˙ mulGrp R r N r Z p r = mulGrp R r I r Y p r R mulGrp R r N I r X p r + ˙ mulGrp R r I r Z p r R mulGrp R r N I r X p r
167 93 141 166 3eqtr4rd φ p Base SymGrp N mulGrp R r N r Y p r + ˙ mulGrp R r N r Z p r = mulGrp R r N r X p r
168 167 oveq2d φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p R mulGrp R r N r X p r
169 62 168 eqtr3d φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r = ℤRHom R pmSgn N p R mulGrp R r N r X p r
170 169 mpteq2dva φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ ℤRHom R pmSgn N p R mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r
171 21 170 syl5eq φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ f p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r
172 171 oveq2d φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ f p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r
173 ringcmn R Ring R CMnd
174 5 22 173 3syl φ R CMnd
175 46 30 symgbasfi N Fin Base SymGrp N Fin
176 27 175 syl φ Base SymGrp N Fin
177 32 60 ringcl R Ring ℤRHom R pmSgn N p Base R mulGrp R r N r Y p r Base R ℤRHom R pmSgn N p R mulGrp R r N r Y p r Base R
178 24 36 52 177 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r Base R
179 32 60 ringcl R Ring ℤRHom R pmSgn N p Base R mulGrp R r N r Z p r Base R ℤRHom R pmSgn N p R mulGrp R r N r Z p r Base R
180 24 36 59 179 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r Base R
181 32 4 174 176 178 180 15 18 gsummptfidmadd2 φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ f p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
182 172 181 eqtr3d φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
183 eqid ℤRHom R = ℤRHom R
184 eqid pmSgn N = pmSgn N
185 1 2 3 30 183 184 60 31 mdetleib2 R CRing X B D X = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r
186 5 6 185 syl2anc φ D X = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r X p r
187 1 2 3 30 183 184 60 31 mdetleib2 R CRing Y B D Y = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r
188 5 7 187 syl2anc φ D Y = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r
189 1 2 3 30 183 184 60 31 mdetleib2 R CRing Z B D Z = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
190 5 8 189 syl2anc φ D Z = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
191 188 190 oveq12d φ D Y + ˙ D Z = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Y p r + ˙ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R r N r Z p r
192 182 186 191 3eqtr4d φ D X = D Y + ˙ D Z