Metamath Proof Explorer


Theorem mdetrsca

Description: The determinant function is homogeneous for each row: If the matrices X and Z are identical except for the I -th row, and the I -th row of the matrix X is the componentwise product of the I -th row of the matrix Z and the scalar Y , then the determinant of X is the determinant of Z multiplied by Y . (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetrsca.d D = N maDet R
mdetrsca.a A = N Mat R
mdetrsca.b B = Base A
mdetrsca.k K = Base R
mdetrsca.t · ˙ = R
mdetrsca.r φ R CRing
mdetrsca.x φ X B
mdetrsca.y φ Y K
mdetrsca.z φ Z B
mdetrsca.i φ I N
mdetrsca.eq φ X I × N = I × N × Y · ˙ f Z I × N
mdetrsca.ne φ X N I × N = Z N I × N
Assertion mdetrsca φ D X = Y · ˙ D Z

Proof

Step Hyp Ref Expression
1 mdetrsca.d D = N maDet R
2 mdetrsca.a A = N Mat R
3 mdetrsca.b B = Base A
4 mdetrsca.k K = Base R
5 mdetrsca.t · ˙ = R
6 mdetrsca.r φ R CRing
7 mdetrsca.x φ X B
8 mdetrsca.y φ Y K
9 mdetrsca.z φ Z B
10 mdetrsca.i φ I N
11 mdetrsca.eq φ X I × N = I × N × Y · ˙ f Z I × N
12 mdetrsca.ne φ X N I × N = Z N I × N
13 11 oveqd φ I X I × N p I = I I × N × Y · ˙ f Z I × N p I
14 13 adantr φ p Base SymGrp N I X I × N p I = I I × N × Y · ˙ f Z I × N p I
15 10 adantr φ p Base SymGrp N I N
16 snidg I N I I
17 15 16 syl φ p Base SymGrp N I I
18 eqid SymGrp N = SymGrp N
19 eqid Base SymGrp N = Base SymGrp N
20 18 19 symgbasf1o p Base SymGrp N p : N 1-1 onto N
21 20 adantl φ p Base SymGrp N p : N 1-1 onto N
22 f1of p : N 1-1 onto N p : N N
23 21 22 syl φ p Base SymGrp N p : N N
24 23 15 ffvelcdmd φ p Base SymGrp N p I N
25 ovres I I p I N I X I × N p I = I X p I
26 17 24 25 syl2anc φ p Base SymGrp N I X I × N p I = I X p I
27 17 24 opelxpd φ p Base SymGrp N I p I I × N
28 snfi I Fin
29 2 3 matrcl X B N Fin R V
30 7 29 syl φ N Fin R V
31 30 simpld φ N Fin
32 31 adantr φ p Base SymGrp N N Fin
33 xpfi I Fin N Fin I × N Fin
34 28 32 33 sylancr φ p Base SymGrp N I × N Fin
35 8 adantr φ p Base SymGrp N Y K
36 2 4 3 matbas2i Z B Z K N × N
37 elmapi Z K N × N Z : N × N K
38 9 36 37 3syl φ Z : N × N K
39 38 adantr φ p Base SymGrp N Z : N × N K
40 39 ffnd φ p Base SymGrp N Z Fn N × N
41 15 snssd φ p Base SymGrp N I N
42 xpss1 I N I × N N × N
43 41 42 syl φ p Base SymGrp N I × N N × N
44 40 43 fnssresd φ p Base SymGrp N Z I × N Fn I × N
45 eqidd φ p Base SymGrp N I p I I × N Z I × N I p I = Z I × N I p I
46 34 35 44 45 ofc1 φ p Base SymGrp N I p I I × N I × N × Y · ˙ f Z I × N I p I = Y · ˙ Z I × N I p I
47 27 46 mpdan φ p Base SymGrp N I × N × Y · ˙ f Z I × N I p I = Y · ˙ Z I × N I p I
48 df-ov I I × N × Y · ˙ f Z I × N p I = I × N × Y · ˙ f Z I × N I p I
49 df-ov I Z I × N p I = Z I × N I p I
50 49 oveq2i Y · ˙ I Z I × N p I = Y · ˙ Z I × N I p I
51 47 48 50 3eqtr4g φ p Base SymGrp N I I × N × Y · ˙ f Z I × N p I = Y · ˙ I Z I × N p I
52 14 26 51 3eqtr3d φ p Base SymGrp N I X p I = Y · ˙ I Z I × N p I
53 ovres I I p I N I Z I × N p I = I Z p I
54 17 24 53 syl2anc φ p Base SymGrp N I Z I × N p I = I Z p I
55 54 oveq2d φ p Base SymGrp N Y · ˙ I Z I × N p I = Y · ˙ I Z p I
56 52 55 eqtrd φ p Base SymGrp N I X p I = Y · ˙ I Z p I
57 56 oveq1d φ p Base SymGrp N I X p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
58 6 crngringd φ R Ring
59 58 adantr φ p Base SymGrp N R Ring
60 39 15 24 fovcdmd φ p Base SymGrp N I Z p I K
61 eqid mulGrp R = mulGrp R
62 61 4 mgpbas K = Base mulGrp R
63 61 crngmgp R CRing mulGrp R CMnd
64 6 63 syl φ mulGrp R CMnd
65 64 adantr φ p Base SymGrp N mulGrp R CMnd
66 difssd φ p Base SymGrp N N I N
67 32 66 ssfid φ p Base SymGrp N N I Fin
68 eldifi r N I r N
69 38 ad2antrr φ p Base SymGrp N r N Z : N × N K
70 simpr φ p Base SymGrp N r N r N
71 23 ffvelcdmda φ p Base SymGrp N r N p r N
72 69 70 71 fovcdmd φ p Base SymGrp N r N r Z p r K
73 68 72 sylan2 φ p Base SymGrp N r N I r Z p r K
74 73 ralrimiva φ p Base SymGrp N r N I r Z p r K
75 62 65 67 74 gsummptcl φ p Base SymGrp N mulGrp R r N I r Z p r K
76 4 5 ringass R Ring Y K I Z p I K mulGrp R r N I r Z p r K Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
77 59 35 60 75 76 syl13anc φ p Base SymGrp N Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
78 57 77 eqtrd φ p Base SymGrp N I X p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
79 61 5 mgpplusg · ˙ = + mulGrp R
80 2 4 3 matbas2i X B X K N × N
81 elmapi X K N × N X : N × N K
82 7 80 81 3syl φ X : N × N K
83 82 ad2antrr φ p Base SymGrp N r N X : N × N K
84 83 70 71 fovcdmd φ p Base SymGrp N r N r X p r K
85 disjdif I N I =
86 85 a1i φ p Base SymGrp N I N I =
87 undif I N I N I = N
88 41 87 sylib φ p Base SymGrp N I N I = N
89 88 eqcomd φ p Base SymGrp N N = I N I
90 62 79 65 32 84 86 89 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r X p r = mulGrp R r I r X p r · ˙ mulGrp R r N I r X p r
91 65 cmnmndd φ p Base SymGrp N mulGrp R Mnd
92 82 adantr φ p Base SymGrp N X : N × N K
93 92 15 24 fovcdmd φ p Base SymGrp N I X p I K
94 id r = I r = I
95 fveq2 r = I p r = p I
96 94 95 oveq12d r = I r X p r = I X p I
97 62 96 gsumsn mulGrp R Mnd I N I X p I K mulGrp R r I r X p r = I X p I
98 91 15 93 97 syl3anc φ p Base SymGrp N mulGrp R r I r X p r = I X p I
99 12 oveqd φ r X N I × N p r = r Z N I × N p r
100 99 ad2antrr φ p Base SymGrp N r N I r X N I × N p r = r Z N I × N p r
101 simpr φ p Base SymGrp N r N I r N I
102 68 71 sylan2 φ p Base SymGrp N r N I p r N
103 ovres r N I p r N r X N I × N p r = r X p r
104 101 102 103 syl2anc φ p Base SymGrp N r N I r X N I × N p r = r X p r
105 ovres r N I p r N r Z N I × N p r = r Z p r
106 101 102 105 syl2anc φ p Base SymGrp N r N I r Z N I × N p r = r Z p r
107 100 104 106 3eqtr3d φ p Base SymGrp N r N I r X p r = r Z p r
108 107 mpteq2dva φ p Base SymGrp N r N I r X p r = r N I r Z p r
109 108 oveq2d φ p Base SymGrp N mulGrp R r N I r X p r = mulGrp R r N I r Z p r
110 98 109 oveq12d φ p Base SymGrp N mulGrp R r I r X p r · ˙ mulGrp R r N I r X p r = I X p I · ˙ mulGrp R r N I r Z p r
111 90 110 eqtrd φ p Base SymGrp N mulGrp R r N r X p r = I X p I · ˙ mulGrp R r N I r Z p r
112 62 79 65 32 72 86 89 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r Z p r = mulGrp R r I r Z p r · ˙ mulGrp R r N I r Z p r
113 94 95 oveq12d r = I r Z p r = I Z p I
114 62 113 gsumsn mulGrp R Mnd I N I Z p I K mulGrp R r I r Z p r = I Z p I
115 91 15 60 114 syl3anc φ p Base SymGrp N mulGrp R r I r Z p r = I Z p I
116 115 oveq1d φ p Base SymGrp N mulGrp R r I r Z p r · ˙ mulGrp R r N I r Z p r = I Z p I · ˙ mulGrp R r N I r Z p r
117 112 116 eqtrd φ p Base SymGrp N mulGrp R r N r Z p r = I Z p I · ˙ mulGrp R r N I r Z p r
118 117 oveq2d φ p Base SymGrp N Y · ˙ mulGrp R r N r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
119 78 111 118 3eqtr4d φ p Base SymGrp N mulGrp R r N r X p r = Y · ˙ mulGrp R r N r Z p r
120 119 oveq2d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
121 6 adantr φ p Base SymGrp N R CRing
122 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
123 58 31 122 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
124 19 62 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N K
125 123 124 syl φ ℤRHom R pmSgn N : Base SymGrp N K
126 125 ffvelcdmda φ p Base SymGrp N ℤRHom R pmSgn N p K
127 4 5 crngcom R CRing ℤRHom R pmSgn N p K Y K ℤRHom R pmSgn N p · ˙ Y = Y · ˙ ℤRHom R pmSgn N p
128 121 126 35 127 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y = Y · ˙ ℤRHom R pmSgn N p
129 128 oveq1d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
130 72 ralrimiva φ p Base SymGrp N r N r Z p r K
131 62 65 32 130 gsummptcl φ p Base SymGrp N mulGrp R r N r Z p r K
132 4 5 ringass R Ring ℤRHom R pmSgn N p K Y K mulGrp R r N r Z p r K ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
133 59 126 35 131 132 syl13anc φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
134 4 5 ringass R Ring Y K ℤRHom R pmSgn N p K mulGrp R r N r Z p r K Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
135 59 35 126 131 134 syl13anc φ p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
136 129 133 135 3eqtr3d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
137 120 136 eqtrd φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
138 137 mpteq2dva φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
139 138 oveq2d φ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = R p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
140 eqid 0 R = 0 R
141 18 19 symgbasfi N Fin Base SymGrp N Fin
142 31 141 syl φ Base SymGrp N Fin
143 4 5 59 126 131 ringcld φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r K
144 eqid p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
145 ovexd φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r V
146 fvexd φ 0 R V
147 144 142 145 146 fsuppmptdm φ finSupp 0 R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
148 4 140 5 58 142 8 143 147 gsummulc2 φ R p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
149 139 148 eqtrd φ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
150 eqid ℤRHom R = ℤRHom R
151 eqid pmSgn N = pmSgn N
152 1 2 3 19 150 151 5 61 mdetleib2 R CRing X B D X = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r
153 6 7 152 syl2anc φ D X = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r
154 1 2 3 19 150 151 5 61 mdetleib2 R CRing Z B D Z = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
155 6 9 154 syl2anc φ D Z = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
156 155 oveq2d φ Y · ˙ D Z = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
157 149 153 156 3eqtr4d φ D X = Y · ˙ D Z