Metamath Proof Explorer


Theorem mdetrsca

Description: The determinant function is homogeneous for each row: If the matrices X and Z are identical except for the I -th row, and the I -th row of the matrix X is the componentwise product of the I -th row of the matrix Z and the scalar Y , then the determinant of X is the determinant of Z multiplied by Y . (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetrsca.d D = N maDet R
mdetrsca.a A = N Mat R
mdetrsca.b B = Base A
mdetrsca.k K = Base R
mdetrsca.t · ˙ = R
mdetrsca.r φ R CRing
mdetrsca.x φ X B
mdetrsca.y φ Y K
mdetrsca.z φ Z B
mdetrsca.i φ I N
mdetrsca.eq φ X I × N = I × N × Y · ˙ f Z I × N
mdetrsca.ne φ X N I × N = Z N I × N
Assertion mdetrsca φ D X = Y · ˙ D Z

Proof

Step Hyp Ref Expression
1 mdetrsca.d D = N maDet R
2 mdetrsca.a A = N Mat R
3 mdetrsca.b B = Base A
4 mdetrsca.k K = Base R
5 mdetrsca.t · ˙ = R
6 mdetrsca.r φ R CRing
7 mdetrsca.x φ X B
8 mdetrsca.y φ Y K
9 mdetrsca.z φ Z B
10 mdetrsca.i φ I N
11 mdetrsca.eq φ X I × N = I × N × Y · ˙ f Z I × N
12 mdetrsca.ne φ X N I × N = Z N I × N
13 11 oveqd φ I X I × N p I = I I × N × Y · ˙ f Z I × N p I
14 13 adantr φ p Base SymGrp N I X I × N p I = I I × N × Y · ˙ f Z I × N p I
15 10 adantr φ p Base SymGrp N I N
16 snidg I N I I
17 15 16 syl φ p Base SymGrp N I I
18 eqid SymGrp N = SymGrp N
19 eqid Base SymGrp N = Base SymGrp N
20 18 19 symgbasf1o p Base SymGrp N p : N 1-1 onto N
21 20 adantl φ p Base SymGrp N p : N 1-1 onto N
22 f1of p : N 1-1 onto N p : N N
23 21 22 syl φ p Base SymGrp N p : N N
24 23 15 ffvelrnd φ p Base SymGrp N p I N
25 ovres I I p I N I X I × N p I = I X p I
26 17 24 25 syl2anc φ p Base SymGrp N I X I × N p I = I X p I
27 17 24 opelxpd φ p Base SymGrp N I p I I × N
28 snfi I Fin
29 2 3 matrcl X B N Fin R V
30 7 29 syl φ N Fin R V
31 30 simpld φ N Fin
32 31 adantr φ p Base SymGrp N N Fin
33 xpfi I Fin N Fin I × N Fin
34 28 32 33 sylancr φ p Base SymGrp N I × N Fin
35 8 adantr φ p Base SymGrp N Y K
36 2 4 3 matbas2i Z B Z K N × N
37 elmapi Z K N × N Z : N × N K
38 9 36 37 3syl φ Z : N × N K
39 38 adantr φ p Base SymGrp N Z : N × N K
40 39 ffnd φ p Base SymGrp N Z Fn N × N
41 15 snssd φ p Base SymGrp N I N
42 xpss1 I N I × N N × N
43 41 42 syl φ p Base SymGrp N I × N N × N
44 fnssres Z Fn N × N I × N N × N Z I × N Fn I × N
45 40 43 44 syl2anc φ p Base SymGrp N Z I × N Fn I × N
46 eqidd φ p Base SymGrp N I p I I × N Z I × N I p I = Z I × N I p I
47 34 35 45 46 ofc1 φ p Base SymGrp N I p I I × N I × N × Y · ˙ f Z I × N I p I = Y · ˙ Z I × N I p I
48 27 47 mpdan φ p Base SymGrp N I × N × Y · ˙ f Z I × N I p I = Y · ˙ Z I × N I p I
49 df-ov I I × N × Y · ˙ f Z I × N p I = I × N × Y · ˙ f Z I × N I p I
50 df-ov I Z I × N p I = Z I × N I p I
51 50 oveq2i Y · ˙ I Z I × N p I = Y · ˙ Z I × N I p I
52 48 49 51 3eqtr4g φ p Base SymGrp N I I × N × Y · ˙ f Z I × N p I = Y · ˙ I Z I × N p I
53 14 26 52 3eqtr3d φ p Base SymGrp N I X p I = Y · ˙ I Z I × N p I
54 ovres I I p I N I Z I × N p I = I Z p I
55 17 24 54 syl2anc φ p Base SymGrp N I Z I × N p I = I Z p I
56 55 oveq2d φ p Base SymGrp N Y · ˙ I Z I × N p I = Y · ˙ I Z p I
57 53 56 eqtrd φ p Base SymGrp N I X p I = Y · ˙ I Z p I
58 57 oveq1d φ p Base SymGrp N I X p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
59 crngring R CRing R Ring
60 6 59 syl φ R Ring
61 60 adantr φ p Base SymGrp N R Ring
62 39 15 24 fovrnd φ p Base SymGrp N I Z p I K
63 eqid mulGrp R = mulGrp R
64 63 4 mgpbas K = Base mulGrp R
65 63 crngmgp R CRing mulGrp R CMnd
66 6 65 syl φ mulGrp R CMnd
67 66 adantr φ p Base SymGrp N mulGrp R CMnd
68 difssd φ p Base SymGrp N N I N
69 32 68 ssfid φ p Base SymGrp N N I Fin
70 eldifi r N I r N
71 38 ad2antrr φ p Base SymGrp N r N Z : N × N K
72 simpr φ p Base SymGrp N r N r N
73 23 ffvelrnda φ p Base SymGrp N r N p r N
74 71 72 73 fovrnd φ p Base SymGrp N r N r Z p r K
75 70 74 sylan2 φ p Base SymGrp N r N I r Z p r K
76 75 ralrimiva φ p Base SymGrp N r N I r Z p r K
77 64 67 69 76 gsummptcl φ p Base SymGrp N mulGrp R r N I r Z p r K
78 4 5 ringass R Ring Y K I Z p I K mulGrp R r N I r Z p r K Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
79 61 35 62 77 78 syl13anc φ p Base SymGrp N Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
80 58 79 eqtrd φ p Base SymGrp N I X p I · ˙ mulGrp R r N I r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
81 63 5 mgpplusg · ˙ = + mulGrp R
82 2 4 3 matbas2i X B X K N × N
83 elmapi X K N × N X : N × N K
84 7 82 83 3syl φ X : N × N K
85 84 ad2antrr φ p Base SymGrp N r N X : N × N K
86 85 72 73 fovrnd φ p Base SymGrp N r N r X p r K
87 disjdif I N I =
88 87 a1i φ p Base SymGrp N I N I =
89 undif I N I N I = N
90 41 89 sylib φ p Base SymGrp N I N I = N
91 90 eqcomd φ p Base SymGrp N N = I N I
92 64 81 67 32 86 88 91 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r X p r = mulGrp R r I r X p r · ˙ mulGrp R r N I r X p r
93 cmnmnd mulGrp R CMnd mulGrp R Mnd
94 67 93 syl φ p Base SymGrp N mulGrp R Mnd
95 84 adantr φ p Base SymGrp N X : N × N K
96 95 15 24 fovrnd φ p Base SymGrp N I X p I K
97 id r = I r = I
98 fveq2 r = I p r = p I
99 97 98 oveq12d r = I r X p r = I X p I
100 64 99 gsumsn mulGrp R Mnd I N I X p I K mulGrp R r I r X p r = I X p I
101 94 15 96 100 syl3anc φ p Base SymGrp N mulGrp R r I r X p r = I X p I
102 12 oveqd φ r X N I × N p r = r Z N I × N p r
103 102 ad2antrr φ p Base SymGrp N r N I r X N I × N p r = r Z N I × N p r
104 simpr φ p Base SymGrp N r N I r N I
105 70 73 sylan2 φ p Base SymGrp N r N I p r N
106 ovres r N I p r N r X N I × N p r = r X p r
107 104 105 106 syl2anc φ p Base SymGrp N r N I r X N I × N p r = r X p r
108 ovres r N I p r N r Z N I × N p r = r Z p r
109 104 105 108 syl2anc φ p Base SymGrp N r N I r Z N I × N p r = r Z p r
110 103 107 109 3eqtr3d φ p Base SymGrp N r N I r X p r = r Z p r
111 110 mpteq2dva φ p Base SymGrp N r N I r X p r = r N I r Z p r
112 111 oveq2d φ p Base SymGrp N mulGrp R r N I r X p r = mulGrp R r N I r Z p r
113 101 112 oveq12d φ p Base SymGrp N mulGrp R r I r X p r · ˙ mulGrp R r N I r X p r = I X p I · ˙ mulGrp R r N I r Z p r
114 92 113 eqtrd φ p Base SymGrp N mulGrp R r N r X p r = I X p I · ˙ mulGrp R r N I r Z p r
115 64 81 67 32 74 88 91 gsummptfidmsplit φ p Base SymGrp N mulGrp R r N r Z p r = mulGrp R r I r Z p r · ˙ mulGrp R r N I r Z p r
116 97 98 oveq12d r = I r Z p r = I Z p I
117 64 116 gsumsn mulGrp R Mnd I N I Z p I K mulGrp R r I r Z p r = I Z p I
118 94 15 62 117 syl3anc φ p Base SymGrp N mulGrp R r I r Z p r = I Z p I
119 118 oveq1d φ p Base SymGrp N mulGrp R r I r Z p r · ˙ mulGrp R r N I r Z p r = I Z p I · ˙ mulGrp R r N I r Z p r
120 115 119 eqtrd φ p Base SymGrp N mulGrp R r N r Z p r = I Z p I · ˙ mulGrp R r N I r Z p r
121 120 oveq2d φ p Base SymGrp N Y · ˙ mulGrp R r N r Z p r = Y · ˙ I Z p I · ˙ mulGrp R r N I r Z p r
122 80 114 121 3eqtr4d φ p Base SymGrp N mulGrp R r N r X p r = Y · ˙ mulGrp R r N r Z p r
123 122 oveq2d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
124 6 adantr φ p Base SymGrp N R CRing
125 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
126 60 31 125 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
127 19 64 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N K
128 126 127 syl φ ℤRHom R pmSgn N : Base SymGrp N K
129 128 ffvelrnda φ p Base SymGrp N ℤRHom R pmSgn N p K
130 4 5 crngcom R CRing ℤRHom R pmSgn N p K Y K ℤRHom R pmSgn N p · ˙ Y = Y · ˙ ℤRHom R pmSgn N p
131 124 129 35 130 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y = Y · ˙ ℤRHom R pmSgn N p
132 131 oveq1d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
133 74 ralrimiva φ p Base SymGrp N r N r Z p r K
134 64 67 32 133 gsummptcl φ p Base SymGrp N mulGrp R r N r Z p r K
135 4 5 ringass R Ring ℤRHom R pmSgn N p K Y K mulGrp R r N r Z p r K ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
136 61 129 35 134 135 syl13anc φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r
137 4 5 ringass R Ring Y K ℤRHom R pmSgn N p K mulGrp R r N r Z p r K Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
138 61 35 129 134 137 syl13anc φ p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
139 132 136 138 3eqtr3d φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ Y · ˙ mulGrp R r N r Z p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
140 123 139 eqtrd φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
141 140 mpteq2dva φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
142 141 oveq2d φ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = R p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
143 eqid 0 R = 0 R
144 eqid + R = + R
145 18 19 symgbasfi N Fin Base SymGrp N Fin
146 31 145 syl φ Base SymGrp N Fin
147 4 5 ringcl R Ring ℤRHom R pmSgn N p K mulGrp R r N r Z p r K ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r K
148 61 129 134 147 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r K
149 eqid p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
150 ovexd φ p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r V
151 fvexd φ 0 R V
152 149 146 150 151 fsuppmptdm φ finSupp 0 R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
153 4 143 144 5 60 146 8 148 152 gsummulc2 φ R p Base SymGrp N Y · ˙ ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
154 142 153 eqtrd φ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
155 eqid ℤRHom R = ℤRHom R
156 eqid pmSgn N = pmSgn N
157 1 2 3 19 155 156 5 63 mdetleib2 R CRing X B D X = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r
158 6 7 157 syl2anc φ D X = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r X p r
159 1 2 3 19 155 156 5 63 mdetleib2 R CRing Z B D Z = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
160 6 9 159 syl2anc φ D Z = R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
161 160 oveq2d φ Y · ˙ D Z = Y · ˙ R p Base SymGrp N ℤRHom R pmSgn N p · ˙ mulGrp R r N r Z p r
162 154 158 161 3eqtr4d φ D X = Y · ˙ D Z