Step |
Hyp |
Ref |
Expression |
1 |
|
mdetrsca2.d |
|
2 |
|
mdetrsca2.k |
|
3 |
|
mdetrsca2.t |
|
4 |
|
mdetrsca2.r |
|
5 |
|
mdetrsca2.n |
|
6 |
|
mdetrsca2.x |
|
7 |
|
mdetrsca2.y |
|
8 |
|
mdetrsca2.f |
|
9 |
|
mdetrsca2.i |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
crngring |
|
13 |
4 12
|
syl |
|
14 |
13
|
3ad2ant1 |
|
15 |
8
|
3ad2ant1 |
|
16 |
2 3
|
ringcl |
|
17 |
14 15 6 16
|
syl3anc |
|
18 |
17 7
|
ifcld |
|
19 |
10 2 11 5 4 18
|
matbas2d |
|
20 |
6 7
|
ifcld |
|
21 |
10 2 11 5 4 20
|
matbas2d |
|
22 |
|
snex |
|
23 |
22
|
a1i |
|
24 |
8
|
3ad2ant1 |
|
25 |
9
|
snssd |
|
26 |
25
|
sselda |
|
27 |
26
|
3adant3 |
|
28 |
27 6
|
syld3an2 |
|
29 |
|
fconstmpo |
|
30 |
29
|
a1i |
|
31 |
|
eqidd |
|
32 |
23 5 24 28 30 31
|
offval22 |
|
33 |
|
mposnif |
|
34 |
33
|
oveq2i |
|
35 |
|
mposnif |
|
36 |
32 34 35
|
3eqtr4g |
|
37 |
|
ssid |
|
38 |
|
resmpo |
|
39 |
25 37 38
|
sylancl |
|
40 |
39
|
oveq2d |
|
41 |
|
resmpo |
|
42 |
25 37 41
|
sylancl |
|
43 |
36 40 42
|
3eqtr4rd |
|
44 |
|
eldifsni |
|
45 |
44
|
3ad2ant2 |
|
46 |
45
|
neneqd |
|
47 |
|
iffalse |
|
48 |
|
iffalse |
|
49 |
47 48
|
eqtr4d |
|
50 |
46 49
|
syl |
|
51 |
50
|
mpoeq3dva |
|
52 |
|
difss |
|
53 |
|
resmpo |
|
54 |
52 37 53
|
mp2an |
|
55 |
|
resmpo |
|
56 |
52 37 55
|
mp2an |
|
57 |
51 54 56
|
3eqtr4g |
|
58 |
1 10 11 2 3 4 19 8 21 9 43 57
|
mdetrsca |
|