Metamath Proof Explorer


Theorem mdetuni

Description: According to the definition in Weierstrass p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018) (Revised by Alexander van der Vekens, 8-Feb-2019)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetuni.e E = N maDet R
mdetuni.cr φ R CRing
mdetuni.f φ F B
mdetuni.no φ D 1 A = 1 ˙
Assertion mdetuni φ D F = E F

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetuni.e E = N maDet R
15 mdetuni.cr φ R CRing
16 mdetuni.f φ F B
17 mdetuni.no φ D 1 A = 1 ˙
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 mdetuni0 φ D F = D 1 A · ˙ E F
19 17 oveq1d φ D 1 A · ˙ E F = 1 ˙ · ˙ E F
20 14 1 2 3 mdetcl R CRing F B E F K
21 15 16 20 syl2anc φ E F K
22 3 7 5 ringlidm R Ring E F K 1 ˙ · ˙ E F = E F
23 9 21 22 syl2anc φ 1 ˙ · ˙ E F = E F
24 18 19 23 3eqtrd φ D F = E F