Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|
2 |
|
mdetuni.b |
|
3 |
|
mdetuni.k |
|
4 |
|
mdetuni.0g |
|
5 |
|
mdetuni.1r |
|
6 |
|
mdetuni.pg |
|
7 |
|
mdetuni.tg |
|
8 |
|
mdetuni.n |
|
9 |
|
mdetuni.r |
|
10 |
|
mdetuni.ff |
|
11 |
|
mdetuni.al |
|
12 |
|
mdetuni.li |
|
13 |
|
mdetuni.sc |
|
14 |
|
mdetuni.e |
|
15 |
|
mdetuni.cr |
|
16 |
|
mdetuni.f |
|
17 |
|
ringgrp |
|
18 |
9 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
10
|
ffvelrnda |
|
21 |
9
|
adantr |
|
22 |
8 9
|
jca |
|
23 |
1
|
matring |
|
24 |
|
eqid |
|
25 |
2 24
|
ringidcl |
|
26 |
22 23 25
|
3syl |
|
27 |
10 26
|
ffvelrnd |
|
28 |
27
|
adantr |
|
29 |
14 1 2 3
|
mdetf |
|
30 |
15 29
|
syl |
|
31 |
30
|
ffvelrnda |
|
32 |
3 7
|
ringcl |
|
33 |
21 28 31 32
|
syl3anc |
|
34 |
|
eqid |
|
35 |
3 34
|
grpsubcl |
|
36 |
19 20 33 35
|
syl3anc |
|
37 |
36
|
fmpttd |
|
38 |
|
simpr1 |
|
39 |
|
fveq2 |
|
40 |
|
fveq2 |
|
41 |
40
|
oveq2d |
|
42 |
39 41
|
oveq12d |
|
43 |
|
eqid |
|
44 |
|
ovex |
|
45 |
42 43 44
|
fvmpt |
|
46 |
38 45
|
syl |
|
47 |
46
|
3adant3 |
|
48 |
|
simp1 |
|
49 |
|
simp21 |
|
50 |
|
simp3r |
|
51 |
|
oveq2 |
|
52 |
|
oveq2 |
|
53 |
51 52
|
eqeq12d |
|
54 |
53
|
cbvralvw |
|
55 |
50 54
|
sylib |
|
56 |
|
simp22 |
|
57 |
|
simp23 |
|
58 |
|
simp3l |
|
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem1 |
|
60 |
48 49 55 56 57 58 59
|
syl33anc |
|
61 |
15
|
3ad2ant1 |
|
62 |
14 1 2 4 61 49 56 57 58 50
|
mdetralt |
|
63 |
62
|
oveq2d |
|
64 |
60 63
|
oveq12d |
|
65 |
3 7 4
|
ringrz |
|
66 |
9 27 65
|
syl2anc |
|
67 |
66
|
oveq2d |
|
68 |
3 4
|
grpidcl |
|
69 |
3 4 34
|
grpsubid |
|
70 |
18 68 69
|
syl2anc2 |
|
71 |
67 70
|
eqtrd |
|
72 |
71
|
3ad2ant1 |
|
73 |
47 64 72
|
3eqtrd |
|
74 |
73
|
3expia |
|
75 |
74
|
ralrimivvva |
|
76 |
|
simp1 |
|
77 |
|
simp2ll |
|
78 |
|
simp2lr |
|
79 |
|
simp2rl |
|
80 |
|
simp2rr |
|
81 |
|
simp31 |
|
82 |
|
simp32 |
|
83 |
|
simp33 |
|
84 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem3 |
|
85 |
76 77 78 79 80 81 82 83 84
|
syl332anc |
|
86 |
15
|
3ad2ant1 |
|
87 |
14 1 2 6 86 77 78 79 80 81 82 83
|
mdetrlin |
|
88 |
87
|
oveq2d |
|
89 |
85 88
|
oveq12d |
|
90 |
|
simprll |
|
91 |
90 45
|
syl |
|
92 |
91
|
3adant3 |
|
93 |
|
simprlr |
|
94 |
|
fveq2 |
|
95 |
|
fveq2 |
|
96 |
95
|
oveq2d |
|
97 |
94 96
|
oveq12d |
|
98 |
|
ovex |
|
99 |
97 43 98
|
fvmpt |
|
100 |
93 99
|
syl |
|
101 |
|
simprrl |
|
102 |
|
fveq2 |
|
103 |
|
fveq2 |
|
104 |
103
|
oveq2d |
|
105 |
102 104
|
oveq12d |
|
106 |
|
ovex |
|
107 |
105 43 106
|
fvmpt |
|
108 |
101 107
|
syl |
|
109 |
100 108
|
oveq12d |
|
110 |
|
ringabl |
|
111 |
9 110
|
syl |
|
112 |
111
|
adantr |
|
113 |
10
|
adantr |
|
114 |
113 93
|
ffvelrnd |
|
115 |
113 101
|
ffvelrnd |
|
116 |
9
|
adantr |
|
117 |
27
|
adantr |
|
118 |
30
|
adantr |
|
119 |
118 93
|
ffvelrnd |
|
120 |
3 7
|
ringcl |
|
121 |
116 117 119 120
|
syl3anc |
|
122 |
118 101
|
ffvelrnd |
|
123 |
3 7
|
ringcl |
|
124 |
116 117 122 123
|
syl3anc |
|
125 |
3 6 34
|
ablsub4 |
|
126 |
112 114 115 121 124 125
|
syl122anc |
|
127 |
3 6 7
|
ringdi |
|
128 |
116 117 119 122 127
|
syl13anc |
|
129 |
128
|
eqcomd |
|
130 |
129
|
oveq2d |
|
131 |
109 126 130
|
3eqtr2d |
|
132 |
131
|
3adant3 |
|
133 |
89 92 132
|
3eqtr4d |
|
134 |
133
|
3expia |
|
135 |
134
|
anassrs |
|
136 |
135
|
ralrimivva |
|
137 |
136
|
ralrimivva |
|
138 |
|
simp1 |
|
139 |
|
simp2ll |
|
140 |
|
simp2lr |
|
141 |
|
simp2rl |
|
142 |
|
simp2rr |
|
143 |
|
simp3l |
|
144 |
|
simp3r |
|
145 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem4 |
|
146 |
138 139 140 141 142 143 144 145
|
syl133anc |
|
147 |
15
|
3ad2ant1 |
|
148 |
14 1 2 3 7 147 139 140 141 142 143 144
|
mdetrsca |
|
149 |
148
|
oveq2d |
|
150 |
146 149
|
oveq12d |
|
151 |
|
simprll |
|
152 |
151 45
|
syl |
|
153 |
152
|
3adant3 |
|
154 |
|
simprrl |
|
155 |
154 107
|
syl |
|
156 |
155
|
oveq2d |
|
157 |
9
|
adantr |
|
158 |
|
simprlr |
|
159 |
10
|
adantr |
|
160 |
159 154
|
ffvelrnd |
|
161 |
27
|
adantr |
|
162 |
30
|
adantr |
|
163 |
162 154
|
ffvelrnd |
|
164 |
157 161 163 123
|
syl3anc |
|
165 |
3 7 34 157 158 160 164
|
ringsubdi |
|
166 |
|
eqid |
|
167 |
166
|
crngmgp |
|
168 |
15 167
|
syl |
|
169 |
168
|
adantr |
|
170 |
166 3
|
mgpbas |
|
171 |
166 7
|
mgpplusg |
|
172 |
170 171
|
cmn12 |
|
173 |
169 158 161 163 172
|
syl13anc |
|
174 |
173
|
oveq2d |
|
175 |
156 165 174
|
3eqtrd |
|
176 |
175
|
3adant3 |
|
177 |
150 153 176
|
3eqtr4d |
|
178 |
177
|
3expia |
|
179 |
178
|
anassrs |
|
180 |
179
|
ralrimivva |
|
181 |
180
|
ralrimivva |
|
182 |
|
eqidd |
|
183 |
|
fveq2 |
|
184 |
|
fveq2 |
|
185 |
184
|
oveq2d |
|
186 |
183 185
|
oveq12d |
|
187 |
14 1 24 5
|
mdet1 |
|
188 |
15 8 187
|
syl2anc |
|
189 |
188
|
oveq2d |
|
190 |
3 7 5
|
ringridm |
|
191 |
9 27 190
|
syl2anc |
|
192 |
189 191
|
eqtrd |
|
193 |
192
|
oveq2d |
|
194 |
3 4 34
|
grpsubid |
|
195 |
18 27 194
|
syl2anc |
|
196 |
193 195
|
eqtrd |
|
197 |
186 196
|
sylan9eqr |
|
198 |
4
|
fvexi |
|
199 |
198
|
a1i |
|
200 |
182 197 26 199
|
fvmptd |
|
201 |
|
eqid |
|
202 |
1 2 3 4 5 6 7 8 9 37 75 137 181 200 201
|
mdetunilem9 |
|
203 |
202
|
fveq1d |
|
204 |
|
fveq2 |
|
205 |
|
fveq2 |
|
206 |
205
|
oveq2d |
|
207 |
204 206
|
oveq12d |
|
208 |
207
|
adantl |
|
209 |
|
ovexd |
|
210 |
182 208 16 209
|
fvmptd |
|
211 |
198
|
fvconst2 |
|
212 |
16 211
|
syl |
|
213 |
203 210 212
|
3eqtr3d |
|
214 |
10 16
|
ffvelrnd |
|
215 |
30 16
|
ffvelrnd |
|
216 |
3 7
|
ringcl |
|
217 |
9 27 215 216
|
syl3anc |
|
218 |
3 4 34
|
grpsubeq0 |
|
219 |
18 214 217 218
|
syl3anc |
|
220 |
213 219
|
mpbid |
|