Metamath Proof Explorer


Theorem mdetunilem1

Description: Lemma for mdetuni . (Contributed by SO, 14-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
Assertion mdetunilem1 φ E B w N F E w = G E w F N G N F G D E = 0 ˙

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 simpr3 φ E B w N F E w = G E w F N G N F G F G
15 simpl3 φ E B w N F E w = G E w F N G N F G w N F E w = G E w
16 neeq2 z = G F z F G
17 oveq1 z = G z E w = G E w
18 17 eqeq2d z = G F E w = z E w F E w = G E w
19 18 ralbidv z = G w N F E w = z E w w N F E w = G E w
20 16 19 anbi12d z = G F z w N F E w = z E w F G w N F E w = G E w
21 20 imbi1d z = G F z w N F E w = z E w D E = 0 ˙ F G w N F E w = G E w D E = 0 ˙
22 simpl2 φ E B w N F E w = G E w F N G N F G E B
23 simpr1 φ E B w N F E w = G E w F N G N F G F N
24 simpl1 φ E B w N F E w = G E w F N G N F G φ
25 24 11 syl φ E B w N F E w = G E w F N G N F G x B y N z N y z w N y x w = z x w D x = 0 ˙
26 oveq x = E y x w = y E w
27 oveq x = E z x w = z E w
28 26 27 eqeq12d x = E y x w = z x w y E w = z E w
29 28 ralbidv x = E w N y x w = z x w w N y E w = z E w
30 29 anbi2d x = E y z w N y x w = z x w y z w N y E w = z E w
31 fveqeq2 x = E D x = 0 ˙ D E = 0 ˙
32 30 31 imbi12d x = E y z w N y x w = z x w D x = 0 ˙ y z w N y E w = z E w D E = 0 ˙
33 32 ralbidv x = E z N y z w N y x w = z x w D x = 0 ˙ z N y z w N y E w = z E w D E = 0 ˙
34 neeq1 y = F y z F z
35 oveq1 y = F y E w = F E w
36 35 eqeq1d y = F y E w = z E w F E w = z E w
37 36 ralbidv y = F w N y E w = z E w w N F E w = z E w
38 34 37 anbi12d y = F y z w N y E w = z E w F z w N F E w = z E w
39 38 imbi1d y = F y z w N y E w = z E w D E = 0 ˙ F z w N F E w = z E w D E = 0 ˙
40 39 ralbidv y = F z N y z w N y E w = z E w D E = 0 ˙ z N F z w N F E w = z E w D E = 0 ˙
41 33 40 rspc2va E B F N x B y N z N y z w N y x w = z x w D x = 0 ˙ z N F z w N F E w = z E w D E = 0 ˙
42 22 23 25 41 syl21anc φ E B w N F E w = G E w F N G N F G z N F z w N F E w = z E w D E = 0 ˙
43 simpr2 φ E B w N F E w = G E w F N G N F G G N
44 21 42 43 rspcdva φ E B w N F E w = G E w F N G N F G F G w N F E w = G E w D E = 0 ˙
45 14 15 44 mp2and φ E B w N F E w = G E w F N G N F G D E = 0 ˙