Metamath Proof Explorer


Theorem mdetunilem2

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetunilem2.ph ψ φ
mdetunilem2.eg ψ E N G N E G
mdetunilem2.f ψ b N F K
mdetunilem2.h ψ a N b N H K
Assertion mdetunilem2 ψ D a N , b N if a = E F if a = G F H = 0 ˙

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetunilem2.ph ψ φ
15 mdetunilem2.eg ψ E N G N E G
16 mdetunilem2.f ψ b N F K
17 mdetunilem2.h ψ a N b N H K
18 14 8 syl ψ N Fin
19 14 9 syl ψ R Ring
20 16 3adant2 ψ a N b N F K
21 20 17 ifcld ψ a N b N if a = G F H K
22 20 21 ifcld ψ a N b N if a = E F if a = G F H K
23 1 3 2 18 19 22 matbas2d ψ a N , b N if a = E F if a = G F H B
24 eqidd ψ w N a N , b N if a = E F if a = G F H = a N , b N if a = E F if a = G F H
25 iftrue a = E if a = E F if a = G F H = F
26 csbeq1a b = w F = w / b F
27 25 26 sylan9eq a = E b = w if a = E F if a = G F H = w / b F
28 27 adantl ψ w N a = E b = w if a = E F if a = G F H = w / b F
29 eqidd ψ w N a = E N = N
30 15 simp1d ψ E N
31 30 adantr ψ w N E N
32 simpr ψ w N w N
33 nfv b ψ w N
34 nfcsb1v _ b w / b F
35 34 nfel1 b w / b F K
36 33 35 nfim b ψ w N w / b F K
37 eleq1w b = w b N w N
38 37 anbi2d b = w ψ b N ψ w N
39 26 eleq1d b = w F K w / b F K
40 38 39 imbi12d b = w ψ b N F K ψ w N w / b F K
41 36 40 16 chvarfv ψ w N w / b F K
42 nfv a ψ w N
43 nfcv _ b E
44 nfcv _ a w
45 nfcv _ a w / b F
46 24 28 29 31 32 41 42 33 43 44 45 34 ovmpodxf ψ w N E a N , b N if a = E F if a = G F H w = w / b F
47 15 simp3d ψ E G
48 47 adantr ψ w N E G
49 neeq2 a = G E a E G
50 48 49 syl5ibrcom ψ w N a = G E a
51 50 imp ψ w N a = G E a
52 51 necomd ψ w N a = G a E
53 52 neneqd ψ w N a = G ¬ a = E
54 53 adantrr ψ w N a = G b = w ¬ a = E
55 54 iffalsed ψ w N a = G b = w if a = E F if a = G F H = if a = G F H
56 iftrue a = G if a = G F H = F
57 56 26 sylan9eq a = G b = w if a = G F H = w / b F
58 57 adantl ψ w N a = G b = w if a = G F H = w / b F
59 55 58 eqtrd ψ w N a = G b = w if a = E F if a = G F H = w / b F
60 eqidd ψ w N a = G N = N
61 15 simp2d ψ G N
62 61 adantr ψ w N G N
63 nfcv _ b G
64 24 59 60 62 32 41 42 33 63 44 45 34 ovmpodxf ψ w N G a N , b N if a = E F if a = G F H w = w / b F
65 46 64 eqtr4d ψ w N E a N , b N if a = E F if a = G F H w = G a N , b N if a = E F if a = G F H w
66 65 ralrimiva ψ w N E a N , b N if a = E F if a = G F H w = G a N , b N if a = E F if a = G F H w
67 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem1 φ a N , b N if a = E F if a = G F H B w N E a N , b N if a = E F if a = G F H w = G a N , b N if a = E F if a = G F H w E N G N E G D a N , b N if a = E F if a = G F H = 0 ˙
68 14 23 66 15 67 syl31anc ψ D a N , b N if a = E F if a = G F H = 0 ˙