Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|
2 |
|
mdetuni.b |
|
3 |
|
mdetuni.k |
|
4 |
|
mdetuni.0g |
|
5 |
|
mdetuni.1r |
|
6 |
|
mdetuni.pg |
|
7 |
|
mdetuni.tg |
|
8 |
|
mdetuni.n |
|
9 |
|
mdetuni.r |
|
10 |
|
mdetuni.ff |
|
11 |
|
mdetuni.al |
|
12 |
|
mdetuni.li |
|
13 |
|
mdetuni.sc |
|
14 |
|
mdetunilem2.ph |
|
15 |
|
mdetunilem2.eg |
|
16 |
|
mdetunilem2.f |
|
17 |
|
mdetunilem2.h |
|
18 |
14 8
|
syl |
|
19 |
14 9
|
syl |
|
20 |
16
|
3adant2 |
|
21 |
20 17
|
ifcld |
|
22 |
20 21
|
ifcld |
|
23 |
1 3 2 18 19 22
|
matbas2d |
|
24 |
|
eqidd |
|
25 |
|
iftrue |
|
26 |
|
csbeq1a |
|
27 |
25 26
|
sylan9eq |
|
28 |
27
|
adantl |
|
29 |
|
eqidd |
|
30 |
15
|
simp1d |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
|
nfv |
|
34 |
|
nfcsb1v |
|
35 |
34
|
nfel1 |
|
36 |
33 35
|
nfim |
|
37 |
|
eleq1w |
|
38 |
37
|
anbi2d |
|
39 |
26
|
eleq1d |
|
40 |
38 39
|
imbi12d |
|
41 |
36 40 16
|
chvarfv |
|
42 |
|
nfv |
|
43 |
|
nfcv |
|
44 |
|
nfcv |
|
45 |
|
nfcv |
|
46 |
24 28 29 31 32 41 42 33 43 44 45 34
|
ovmpodxf |
|
47 |
15
|
simp3d |
|
48 |
47
|
adantr |
|
49 |
|
neeq2 |
|
50 |
48 49
|
syl5ibrcom |
|
51 |
50
|
imp |
|
52 |
51
|
necomd |
|
53 |
52
|
neneqd |
|
54 |
53
|
adantrr |
|
55 |
54
|
iffalsed |
|
56 |
|
iftrue |
|
57 |
56 26
|
sylan9eq |
|
58 |
57
|
adantl |
|
59 |
55 58
|
eqtrd |
|
60 |
|
eqidd |
|
61 |
15
|
simp2d |
|
62 |
61
|
adantr |
|
63 |
|
nfcv |
|
64 |
24 59 60 62 32 41 42 33 63 44 45 34
|
ovmpodxf |
|
65 |
46 64
|
eqtr4d |
|
66 |
65
|
ralrimiva |
|
67 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem1 |
|
68 |
14 23 66 15 67
|
syl31anc |
|