Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|
2 |
|
mdetuni.b |
|
3 |
|
mdetuni.k |
|
4 |
|
mdetuni.0g |
|
5 |
|
mdetuni.1r |
|
6 |
|
mdetuni.pg |
|
7 |
|
mdetuni.tg |
|
8 |
|
mdetuni.n |
|
9 |
|
mdetuni.r |
|
10 |
|
mdetuni.ff |
|
11 |
|
mdetuni.al |
|
12 |
|
mdetuni.li |
|
13 |
|
mdetuni.sc |
|
14 |
|
simp23 |
|
15 |
|
simp3l |
|
16 |
|
simp3r |
|
17 |
|
simprl |
|
18 |
|
simprr |
|
19 |
|
simpl2 |
|
20 |
|
simpl3 |
|
21 |
|
simpl1 |
|
22 |
21 12
|
syl |
|
23 |
|
reseq1 |
|
24 |
23
|
eqeq1d |
|
25 |
|
reseq1 |
|
26 |
25
|
eqeq1d |
|
27 |
25
|
eqeq1d |
|
28 |
24 26 27
|
3anbi123d |
|
29 |
|
fveq2 |
|
30 |
29
|
eqeq1d |
|
31 |
28 30
|
imbi12d |
|
32 |
31
|
2ralbidv |
|
33 |
|
reseq1 |
|
34 |
33
|
oveq1d |
|
35 |
34
|
eqeq2d |
|
36 |
|
reseq1 |
|
37 |
36
|
eqeq2d |
|
38 |
35 37
|
3anbi12d |
|
39 |
|
fveq2 |
|
40 |
39
|
oveq1d |
|
41 |
40
|
eqeq2d |
|
42 |
38 41
|
imbi12d |
|
43 |
42
|
2ralbidv |
|
44 |
32 43
|
rspc2va |
|
45 |
19 20 22 44
|
syl21anc |
|
46 |
|
reseq1 |
|
47 |
46
|
oveq2d |
|
48 |
47
|
eqeq2d |
|
49 |
|
reseq1 |
|
50 |
49
|
eqeq2d |
|
51 |
48 50
|
3anbi13d |
|
52 |
|
fveq2 |
|
53 |
52
|
oveq2d |
|
54 |
53
|
eqeq2d |
|
55 |
51 54
|
imbi12d |
|
56 |
|
sneq |
|
57 |
56
|
xpeq1d |
|
58 |
57
|
reseq2d |
|
59 |
57
|
reseq2d |
|
60 |
57
|
reseq2d |
|
61 |
59 60
|
oveq12d |
|
62 |
58 61
|
eqeq12d |
|
63 |
56
|
difeq2d |
|
64 |
63
|
xpeq1d |
|
65 |
64
|
reseq2d |
|
66 |
64
|
reseq2d |
|
67 |
65 66
|
eqeq12d |
|
68 |
64
|
reseq2d |
|
69 |
65 68
|
eqeq12d |
|
70 |
62 67 69
|
3anbi123d |
|
71 |
70
|
imbi1d |
|
72 |
55 71
|
rspc2va |
|
73 |
17 18 45 72
|
syl21anc |
|
74 |
73
|
3adantr3 |
|
75 |
74
|
3adant3 |
|
76 |
14 15 16 75
|
mp3and |
|