Metamath Proof Explorer


Theorem mdetunilem3

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
Assertion mdetunilem3 φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 simp23 φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N E H × N = F H × N + ˙ f G H × N
15 simp3l φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N E N H × N = F N H × N
16 simp3r φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N E N H × N = G N H × N
17 simprl φ E B F B G B H N G B
18 simprr φ E B F B G B H N H N
19 simpl2 φ E B F B G B H N E B
20 simpl3 φ E B F B G B H N F B
21 simpl1 φ E B F B G B H N φ
22 21 12 syl φ E B F B G B H N x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
23 reseq1 x = E x w × N = E w × N
24 23 eqeq1d x = E x w × N = y w × N + ˙ f z w × N E w × N = y w × N + ˙ f z w × N
25 reseq1 x = E x N w × N = E N w × N
26 25 eqeq1d x = E x N w × N = y N w × N E N w × N = y N w × N
27 25 eqeq1d x = E x N w × N = z N w × N E N w × N = z N w × N
28 24 26 27 3anbi123d x = E x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N
29 fveq2 x = E D x = D E
30 29 eqeq1d x = E D x = D y + ˙ D z D E = D y + ˙ D z
31 28 30 imbi12d x = E x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N D E = D y + ˙ D z
32 31 2ralbidv x = E z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z z B w N E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N D E = D y + ˙ D z
33 reseq1 y = F y w × N = F w × N
34 33 oveq1d y = F y w × N + ˙ f z w × N = F w × N + ˙ f z w × N
35 34 eqeq2d y = F E w × N = y w × N + ˙ f z w × N E w × N = F w × N + ˙ f z w × N
36 reseq1 y = F y N w × N = F N w × N
37 36 eqeq2d y = F E N w × N = y N w × N E N w × N = F N w × N
38 35 37 3anbi12d y = F E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N
39 fveq2 y = F D y = D F
40 39 oveq1d y = F D y + ˙ D z = D F + ˙ D z
41 40 eqeq2d y = F D E = D y + ˙ D z D E = D F + ˙ D z
42 38 41 imbi12d y = F E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N D E = D y + ˙ D z E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z
43 42 2ralbidv y = F z B w N E w × N = y w × N + ˙ f z w × N E N w × N = y N w × N E N w × N = z N w × N D E = D y + ˙ D z z B w N E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z
44 32 43 rspc2va E B F B x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z z B w N E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z
45 19 20 22 44 syl21anc φ E B F B G B H N z B w N E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z
46 reseq1 z = G z w × N = G w × N
47 46 oveq2d z = G F w × N + ˙ f z w × N = F w × N + ˙ f G w × N
48 47 eqeq2d z = G E w × N = F w × N + ˙ f z w × N E w × N = F w × N + ˙ f G w × N
49 reseq1 z = G z N w × N = G N w × N
50 49 eqeq2d z = G E N w × N = z N w × N E N w × N = G N w × N
51 48 50 3anbi13d z = G E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N E w × N = F w × N + ˙ f G w × N E N w × N = F N w × N E N w × N = G N w × N
52 fveq2 z = G D z = D G
53 52 oveq2d z = G D F + ˙ D z = D F + ˙ D G
54 53 eqeq2d z = G D E = D F + ˙ D z D E = D F + ˙ D G
55 51 54 imbi12d z = G E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z E w × N = F w × N + ˙ f G w × N E N w × N = F N w × N E N w × N = G N w × N D E = D F + ˙ D G
56 sneq w = H w = H
57 56 xpeq1d w = H w × N = H × N
58 57 reseq2d w = H E w × N = E H × N
59 57 reseq2d w = H F w × N = F H × N
60 57 reseq2d w = H G w × N = G H × N
61 59 60 oveq12d w = H F w × N + ˙ f G w × N = F H × N + ˙ f G H × N
62 58 61 eqeq12d w = H E w × N = F w × N + ˙ f G w × N E H × N = F H × N + ˙ f G H × N
63 56 difeq2d w = H N w = N H
64 63 xpeq1d w = H N w × N = N H × N
65 64 reseq2d w = H E N w × N = E N H × N
66 64 reseq2d w = H F N w × N = F N H × N
67 65 66 eqeq12d w = H E N w × N = F N w × N E N H × N = F N H × N
68 64 reseq2d w = H G N w × N = G N H × N
69 65 68 eqeq12d w = H E N w × N = G N w × N E N H × N = G N H × N
70 62 67 69 3anbi123d w = H E w × N = F w × N + ˙ f G w × N E N w × N = F N w × N E N w × N = G N w × N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N
71 70 imbi1d w = H E w × N = F w × N + ˙ f G w × N E N w × N = F N w × N E N w × N = G N w × N D E = D F + ˙ D G E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G
72 55 71 rspc2va G B H N z B w N E w × N = F w × N + ˙ f z w × N E N w × N = F N w × N E N w × N = z N w × N D E = D F + ˙ D z E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G
73 17 18 45 72 syl21anc φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G
74 73 3adantr3 φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G
75 74 3adant3 φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G
76 14 15 16 75 mp3and φ E B F B G B H N E H × N = F H × N + ˙ f G H × N E N H × N = F N H × N E N H × N = G N H × N D E = D F + ˙ D G