Metamath Proof Explorer


Theorem mdetunilem4

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
Assertion mdetunilem4 φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 simp32 φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N E H × N = H × N × F · ˙ f G H × N
15 simp33 φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N E N H × N = G N H × N
16 simp1 H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N H N
17 simp23 φ E B F K G B H N G B
18 simp3 φ E B F K G B H N H N
19 simp21 φ E B F K G B H N E B
20 simp22 φ E B F K G B H N F K
21 13 3ad2ant1 φ E B F K G B H N x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
22 reseq1 x = E x w × N = E w × N
23 22 eqeq1d x = E x w × N = w × N × y · ˙ f z w × N E w × N = w × N × y · ˙ f z w × N
24 reseq1 x = E x N w × N = E N w × N
25 24 eqeq1d x = E x N w × N = z N w × N E N w × N = z N w × N
26 23 25 anbi12d x = E x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N
27 fveqeq2 x = E D x = y · ˙ D z D E = y · ˙ D z
28 26 27 imbi12d x = E x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N D E = y · ˙ D z
29 28 2ralbidv x = E z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z z B w N E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N D E = y · ˙ D z
30 sneq y = F y = F
31 30 xpeq2d y = F w × N × y = w × N × F
32 31 oveq1d y = F w × N × y · ˙ f z w × N = w × N × F · ˙ f z w × N
33 32 eqeq2d y = F E w × N = w × N × y · ˙ f z w × N E w × N = w × N × F · ˙ f z w × N
34 33 anbi1d y = F E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N
35 oveq1 y = F y · ˙ D z = F · ˙ D z
36 35 eqeq2d y = F D E = y · ˙ D z D E = F · ˙ D z
37 34 36 imbi12d y = F E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N D E = y · ˙ D z E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z
38 37 2ralbidv y = F z B w N E w × N = w × N × y · ˙ f z w × N E N w × N = z N w × N D E = y · ˙ D z z B w N E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z
39 29 38 rspc2va E B F K x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z z B w N E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z
40 19 20 21 39 syl21anc φ E B F K G B H N z B w N E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z
41 reseq1 z = G z w × N = G w × N
42 41 oveq2d z = G w × N × F · ˙ f z w × N = w × N × F · ˙ f G w × N
43 42 eqeq2d z = G E w × N = w × N × F · ˙ f z w × N E w × N = w × N × F · ˙ f G w × N
44 reseq1 z = G z N w × N = G N w × N
45 44 eqeq2d z = G E N w × N = z N w × N E N w × N = G N w × N
46 43 45 anbi12d z = G E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N E w × N = w × N × F · ˙ f G w × N E N w × N = G N w × N
47 fveq2 z = G D z = D G
48 47 oveq2d z = G F · ˙ D z = F · ˙ D G
49 48 eqeq2d z = G D E = F · ˙ D z D E = F · ˙ D G
50 46 49 imbi12d z = G E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z E w × N = w × N × F · ˙ f G w × N E N w × N = G N w × N D E = F · ˙ D G
51 sneq w = H w = H
52 51 xpeq1d w = H w × N = H × N
53 52 reseq2d w = H E w × N = E H × N
54 52 xpeq1d w = H w × N × F = H × N × F
55 52 reseq2d w = H G w × N = G H × N
56 54 55 oveq12d w = H w × N × F · ˙ f G w × N = H × N × F · ˙ f G H × N
57 53 56 eqeq12d w = H E w × N = w × N × F · ˙ f G w × N E H × N = H × N × F · ˙ f G H × N
58 51 difeq2d w = H N w = N H
59 58 xpeq1d w = H N w × N = N H × N
60 59 reseq2d w = H E N w × N = E N H × N
61 59 reseq2d w = H G N w × N = G N H × N
62 60 61 eqeq12d w = H E N w × N = G N w × N E N H × N = G N H × N
63 57 62 anbi12d w = H E w × N = w × N × F · ˙ f G w × N E N w × N = G N w × N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N
64 63 imbi1d w = H E w × N = w × N × F · ˙ f G w × N E N w × N = G N w × N D E = F · ˙ D G E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G
65 50 64 rspc2va G B H N z B w N E w × N = w × N × F · ˙ f z w × N E N w × N = z N w × N D E = F · ˙ D z E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G
66 17 18 40 65 syl21anc φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G
67 16 66 syl3an3 φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G
68 14 15 67 mp2and φ E B F K G B H N E H × N = H × N × F · ˙ f G H × N E N H × N = G N H × N D E = F · ˙ D G