Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|
2 |
|
mdetuni.b |
|
3 |
|
mdetuni.k |
|
4 |
|
mdetuni.0g |
|
5 |
|
mdetuni.1r |
|
6 |
|
mdetuni.pg |
|
7 |
|
mdetuni.tg |
|
8 |
|
mdetuni.n |
|
9 |
|
mdetuni.r |
|
10 |
|
mdetuni.ff |
|
11 |
|
mdetuni.al |
|
12 |
|
mdetuni.li |
|
13 |
|
mdetuni.sc |
|
14 |
|
mdetunilem5.ph |
|
15 |
|
mdetunilem5.e |
|
16 |
|
mdetunilem5.fgh |
|
17 |
14 8
|
syl |
|
18 |
14 9
|
syl |
|
19 |
18
|
3ad2ant1 |
|
20 |
16
|
simp1d |
|
21 |
16
|
simp2d |
|
22 |
3 6
|
ringacl |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
16
|
simp3d |
|
25 |
23 24
|
ifcld |
|
26 |
1 3 2 17 18 25
|
matbas2d |
|
27 |
20 24
|
ifcld |
|
28 |
1 3 2 17 18 27
|
matbas2d |
|
29 |
21 24
|
ifcld |
|
30 |
1 3 2 17 18 29
|
matbas2d |
|
31 |
|
snex |
|
32 |
31
|
a1i |
|
33 |
15
|
snssd |
|
34 |
33
|
3ad2ant1 |
|
35 |
|
simp2 |
|
36 |
34 35
|
sseldd |
|
37 |
36 20
|
syld3an2 |
|
38 |
36 21
|
syld3an2 |
|
39 |
|
eqidd |
|
40 |
|
eqidd |
|
41 |
32 17 37 38 39 40
|
offval22 |
|
42 |
41
|
eqcomd |
|
43 |
|
mposnif |
|
44 |
|
mposnif |
|
45 |
|
mposnif |
|
46 |
44 45
|
oveq12i |
|
47 |
42 43 46
|
3eqtr4g |
|
48 |
|
ssid |
|
49 |
|
resmpo |
|
50 |
33 48 49
|
sylancl |
|
51 |
|
resmpo |
|
52 |
33 48 51
|
sylancl |
|
53 |
|
resmpo |
|
54 |
33 48 53
|
sylancl |
|
55 |
52 54
|
oveq12d |
|
56 |
47 50 55
|
3eqtr4d |
|
57 |
|
eldifsni |
|
58 |
57
|
3ad2ant2 |
|
59 |
58
|
neneqd |
|
60 |
|
iffalse |
|
61 |
|
iffalse |
|
62 |
60 61
|
eqtr4d |
|
63 |
59 62
|
syl |
|
64 |
63
|
mpoeq3dva |
|
65 |
|
difss |
|
66 |
|
resmpo |
|
67 |
65 48 66
|
mp2an |
|
68 |
|
resmpo |
|
69 |
65 48 68
|
mp2an |
|
70 |
64 67 69
|
3eqtr4g |
|
71 |
|
iffalse |
|
72 |
60 71
|
eqtr4d |
|
73 |
59 72
|
syl |
|
74 |
73
|
mpoeq3dva |
|
75 |
|
resmpo |
|
76 |
65 48 75
|
mp2an |
|
77 |
74 67 76
|
3eqtr4g |
|
78 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem3 |
|
79 |
14 26 28 30 15 56 70 77 78
|
syl332anc |
|