Metamath Proof Explorer


Theorem mdetunilem6

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetunilem6.ph ψ φ
mdetunilem6.ef ψ E N F N E F
mdetunilem6.gh ψ b N G K H K
mdetunilem6.i ψ a N b N I K
Assertion mdetunilem6 ψ D a N , b N if a = E G if a = F H I = inv g R D a N , b N if a = E H if a = F G I

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetunilem6.ph ψ φ
15 mdetunilem6.ef ψ E N F N E F
16 mdetunilem6.gh ψ b N G K H K
17 mdetunilem6.i ψ a N b N I K
18 15 simp1d ψ E N
19 16 simprd ψ b N H K
20 19 3adant2 ψ a N b N H K
21 16 simpld ψ b N G K
22 21 3adant2 ψ a N b N G K
23 ringgrp R Ring R Grp
24 14 9 23 3syl ψ R Grp
25 24 adantr ψ b N R Grp
26 3 6 grpcl R Grp H K G K H + ˙ G K
27 25 19 21 26 syl3anc ψ b N H + ˙ G K
28 27 3adant2 ψ a N b N H + ˙ G K
29 28 17 ifcld ψ a N b N if a = F H + ˙ G I K
30 20 22 29 3jca ψ a N b N H K G K if a = F H + ˙ G I K
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 30 mdetunilem5 ψ D a N , b N if a = E H + ˙ G if a = F H + ˙ G I = D a N , b N if a = E H if a = F H + ˙ G I + ˙ D a N , b N if a = E G if a = F H + ˙ G I
32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 17 mdetunilem2 ψ D a N , b N if a = E H + ˙ G if a = F H + ˙ G I = 0 ˙
33 15 simp2d ψ F N
34 20 17 ifcld ψ a N b N if a = E H I K
35 20 22 34 3jca ψ a N b N H K G K if a = E H I K
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 35 mdetunilem5 ψ D a N , b N if a = F H + ˙ G if a = E H I = D a N , b N if a = F H if a = E H I + ˙ D a N , b N if a = F G if a = E H I
37 15 simp3d ψ E F
38 37 necomd ψ F E
39 33 18 38 3jca ψ F N E N F E
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 19 17 mdetunilem2 ψ D a N , b N if a = F H if a = E H I = 0 ˙
41 40 oveq1d ψ D a N , b N if a = F H if a = E H I + ˙ D a N , b N if a = F G if a = E H I = 0 ˙ + ˙ D a N , b N if a = F G if a = E H I
42 37 neneqd ψ ¬ E = F
43 eqtr2 a = E a = F E = F
44 42 43 nsyl ψ ¬ a = E a = F
45 44 3ad2ant1 ψ a N b N ¬ a = E a = F
46 ifcomnan ¬ a = E a = F if a = E H if a = F G I = if a = F G if a = E H I
47 45 46 syl ψ a N b N if a = E H if a = F G I = if a = F G if a = E H I
48 47 mpoeq3dva ψ a N , b N if a = E H if a = F G I = a N , b N if a = F G if a = E H I
49 48 fveq2d ψ D a N , b N if a = E H if a = F G I = D a N , b N if a = F G if a = E H I
50 14 10 syl ψ D : B K
51 14 8 syl ψ N Fin
52 22 17 ifcld ψ a N b N if a = F G I K
53 20 52 ifcld ψ a N b N if a = E H if a = F G I K
54 1 3 2 51 24 53 matbas2d ψ a N , b N if a = E H if a = F G I B
55 50 54 ffvelrnd ψ D a N , b N if a = E H if a = F G I K
56 49 55 eqeltrrd ψ D a N , b N if a = F G if a = E H I K
57 3 6 4 grplid R Grp D a N , b N if a = F G if a = E H I K 0 ˙ + ˙ D a N , b N if a = F G if a = E H I = D a N , b N if a = F G if a = E H I
58 24 56 57 syl2anc ψ 0 ˙ + ˙ D a N , b N if a = F G if a = E H I = D a N , b N if a = F G if a = E H I
59 36 41 58 3eqtrd ψ D a N , b N if a = F H + ˙ G if a = E H I = D a N , b N if a = F G if a = E H I
60 ifcomnan ¬ a = E a = F if a = E H if a = F H + ˙ G I = if a = F H + ˙ G if a = E H I
61 45 60 syl ψ a N b N if a = E H if a = F H + ˙ G I = if a = F H + ˙ G if a = E H I
62 61 mpoeq3dva ψ a N , b N if a = E H if a = F H + ˙ G I = a N , b N if a = F H + ˙ G if a = E H I
63 62 fveq2d ψ D a N , b N if a = E H if a = F H + ˙ G I = D a N , b N if a = F H + ˙ G if a = E H I
64 59 63 49 3eqtr4d ψ D a N , b N if a = E H if a = F H + ˙ G I = D a N , b N if a = E H if a = F G I
65 22 17 ifcld ψ a N b N if a = E G I K
66 20 22 65 3jca ψ a N b N H K G K if a = E G I K
67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 66 mdetunilem5 ψ D a N , b N if a = F H + ˙ G if a = E G I = D a N , b N if a = F H if a = E G I + ˙ D a N , b N if a = F G if a = E G I
68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 21 17 mdetunilem2 ψ D a N , b N if a = F G if a = E G I = 0 ˙
69 68 oveq2d ψ D a N , b N if a = F H if a = E G I + ˙ D a N , b N if a = F G if a = E G I = D a N , b N if a = F H if a = E G I + ˙ 0 ˙
70 ifcomnan ¬ a = E a = F if a = E G if a = F H I = if a = F H if a = E G I
71 45 70 syl ψ a N b N if a = E G if a = F H I = if a = F H if a = E G I
72 71 mpoeq3dva ψ a N , b N if a = E G if a = F H I = a N , b N if a = F H if a = E G I
73 72 fveq2d ψ D a N , b N if a = E G if a = F H I = D a N , b N if a = F H if a = E G I
74 20 17 ifcld ψ a N b N if a = F H I K
75 22 74 ifcld ψ a N b N if a = E G if a = F H I K
76 1 3 2 51 24 75 matbas2d ψ a N , b N if a = E G if a = F H I B
77 50 76 ffvelrnd ψ D a N , b N if a = E G if a = F H I K
78 73 77 eqeltrrd ψ D a N , b N if a = F H if a = E G I K
79 3 6 4 grprid R Grp D a N , b N if a = F H if a = E G I K D a N , b N if a = F H if a = E G I + ˙ 0 ˙ = D a N , b N if a = F H if a = E G I
80 24 78 79 syl2anc ψ D a N , b N if a = F H if a = E G I + ˙ 0 ˙ = D a N , b N if a = F H if a = E G I
81 67 69 80 3eqtrd ψ D a N , b N if a = F H + ˙ G if a = E G I = D a N , b N if a = F H if a = E G I
82 ifcomnan ¬ a = E a = F if a = E G if a = F H + ˙ G I = if a = F H + ˙ G if a = E G I
83 45 82 syl ψ a N b N if a = E G if a = F H + ˙ G I = if a = F H + ˙ G if a = E G I
84 83 mpoeq3dva ψ a N , b N if a = E G if a = F H + ˙ G I = a N , b N if a = F H + ˙ G if a = E G I
85 84 fveq2d ψ D a N , b N if a = E G if a = F H + ˙ G I = D a N , b N if a = F H + ˙ G if a = E G I
86 81 85 73 3eqtr4d ψ D a N , b N if a = E G if a = F H + ˙ G I = D a N , b N if a = E G if a = F H I
87 64 86 oveq12d ψ D a N , b N if a = E H if a = F H + ˙ G I + ˙ D a N , b N if a = E G if a = F H + ˙ G I = D a N , b N if a = E H if a = F G I + ˙ D a N , b N if a = E G if a = F H I
88 31 32 87 3eqtr3rd ψ D a N , b N if a = E H if a = F G I + ˙ D a N , b N if a = E G if a = F H I = 0 ˙
89 eqid inv g R = inv g R
90 3 6 4 89 grpinvid1 R Grp D a N , b N if a = E H if a = F G I K D a N , b N if a = E G if a = F H I K inv g R D a N , b N if a = E H if a = F G I = D a N , b N if a = E G if a = F H I D a N , b N if a = E H if a = F G I + ˙ D a N , b N if a = E G if a = F H I = 0 ˙
91 24 55 77 90 syl3anc ψ inv g R D a N , b N if a = E H if a = F G I = D a N , b N if a = E G if a = F H I D a N , b N if a = E H if a = F G I + ˙ D a N , b N if a = E G if a = F H I = 0 ˙
92 88 91 mpbird ψ inv g R D a N , b N if a = E H if a = F G I = D a N , b N if a = E G if a = F H I
93 92 eqcomd ψ D a N , b N if a = E G if a = F H I = inv g R D a N , b N if a = E H if a = F G I