Metamath Proof Explorer


Theorem mdetunilem8

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetunilem8.id φ D 1 A = 0 ˙
Assertion mdetunilem8 φ E : N N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetunilem8.id φ D 1 A = 0 ˙
15 simpl φ E : N 1-1 N φ
16 enrefg N Fin N N
17 8 16 syl φ N N
18 f1finf1o N N N Fin E : N 1-1 N E : N 1-1 onto N
19 17 8 18 syl2anc φ E : N 1-1 N E : N 1-1 onto N
20 19 biimpa φ E : N 1-1 N E : N 1-1 onto N
21 1 matring N Fin R Ring A Ring
22 8 9 21 syl2anc φ A Ring
23 eqid 1 A = 1 A
24 2 23 ringidcl A Ring 1 A B
25 22 24 syl φ 1 A B
26 25 adantr φ E : N 1-1 N 1 A B
27 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem7 φ E : N 1-1 onto N 1 A B D a N , b N E a 1 A b = ℤRHom R pmSgn N E · ˙ D 1 A
28 15 20 26 27 syl3anc φ E : N 1-1 N D a N , b N E a 1 A b = ℤRHom R pmSgn N E · ˙ D 1 A
29 8 adantr φ E : N 1-1 N N Fin
30 29 3ad2ant1 φ E : N 1-1 N a N b N N Fin
31 9 adantr φ E : N 1-1 N R Ring
32 31 3ad2ant1 φ E : N 1-1 N a N b N R Ring
33 simp1r φ E : N 1-1 N a N b N E : N 1-1 N
34 f1f E : N 1-1 N E : N N
35 33 34 syl φ E : N 1-1 N a N b N E : N N
36 simp2 φ E : N 1-1 N a N b N a N
37 35 36 ffvelrnd φ E : N 1-1 N a N b N E a N
38 simp3 φ E : N 1-1 N a N b N b N
39 1 5 4 30 32 37 38 23 mat1ov φ E : N 1-1 N a N b N E a 1 A b = if E a = b 1 ˙ 0 ˙
40 39 mpoeq3dva φ E : N 1-1 N a N , b N E a 1 A b = a N , b N if E a = b 1 ˙ 0 ˙
41 40 fveq2d φ E : N 1-1 N D a N , b N E a 1 A b = D a N , b N if E a = b 1 ˙ 0 ˙
42 14 adantr φ E : N 1-1 N D 1 A = 0 ˙
43 42 oveq2d φ E : N 1-1 N ℤRHom R pmSgn N E · ˙ D 1 A = ℤRHom R pmSgn N E · ˙ 0 ˙
44 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
45 9 8 44 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
46 eqid Base SymGrp N = Base SymGrp N
47 eqid mulGrp R = mulGrp R
48 47 3 mgpbas K = Base mulGrp R
49 46 48 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N K
50 45 49 syl φ ℤRHom R pmSgn N : Base SymGrp N K
51 50 adantr φ E : N 1-1 N ℤRHom R pmSgn N : Base SymGrp N K
52 eqid SymGrp N = SymGrp N
53 52 46 elsymgbas N Fin E Base SymGrp N E : N 1-1 onto N
54 29 53 syl φ E : N 1-1 N E Base SymGrp N E : N 1-1 onto N
55 20 54 mpbird φ E : N 1-1 N E Base SymGrp N
56 51 55 ffvelrnd φ E : N 1-1 N ℤRHom R pmSgn N E K
57 3 7 4 ringrz R Ring ℤRHom R pmSgn N E K ℤRHom R pmSgn N E · ˙ 0 ˙ = 0 ˙
58 31 56 57 syl2anc φ E : N 1-1 N ℤRHom R pmSgn N E · ˙ 0 ˙ = 0 ˙
59 43 58 eqtrd φ E : N 1-1 N ℤRHom R pmSgn N E · ˙ D 1 A = 0 ˙
60 28 41 59 3eqtr3d φ E : N 1-1 N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
61 60 ex φ E : N 1-1 N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
62 61 adantr φ E : N N E : N 1-1 N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
63 dff13 E : N 1-1 N E : N N c N d N E c = E d c = d
64 ibar E : N N c N d N E c = E d c = d E : N N c N d N E c = E d c = d
65 64 adantl φ E : N N c N d N E c = E d c = d E : N N c N d N E c = E d c = d
66 63 65 bitr4id φ E : N N E : N 1-1 N c N d N E c = E d c = d
67 66 notbid φ E : N N ¬ E : N 1-1 N ¬ c N d N E c = E d c = d
68 rexnal c N ¬ d N E c = E d c = d ¬ c N d N E c = E d c = d
69 rexnal d N ¬ E c = E d c = d ¬ d N E c = E d c = d
70 df-ne c d ¬ c = d
71 70 anbi2i E c = E d c d E c = E d ¬ c = d
72 annim E c = E d ¬ c = d ¬ E c = E d c = d
73 71 72 bitr2i ¬ E c = E d c = d E c = E d c d
74 73 rexbii d N ¬ E c = E d c = d d N E c = E d c d
75 69 74 bitr3i ¬ d N E c = E d c = d d N E c = E d c d
76 75 rexbii c N ¬ d N E c = E d c = d c N d N E c = E d c d
77 68 76 bitr3i ¬ c N d N E c = E d c = d c N d N E c = E d c d
78 67 77 bitrdi φ E : N N ¬ E : N 1-1 N c N d N E c = E d c d
79 simprrl φ E : N N c N d N E c = E d c d E c = E d
80 fveqeq2 a = c E a = b E c = b
81 80 ifbid a = c if E a = b 1 ˙ 0 ˙ = if E c = b 1 ˙ 0 ˙
82 iftrue a = c if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if E c = b 1 ˙ 0 ˙
83 81 82 eqtr4d a = c if E a = b 1 ˙ 0 ˙ = if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
84 fveqeq2 a = d E a = b E d = b
85 84 ifbid a = d if E a = b 1 ˙ 0 ˙ = if E d = b 1 ˙ 0 ˙
86 iftrue a = d if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if E d = b 1 ˙ 0 ˙
87 85 86 eqtr4d a = d if E a = b 1 ˙ 0 ˙ = if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
88 iffalse ¬ a = d if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if E a = b 1 ˙ 0 ˙
89 88 eqcomd ¬ a = d if E a = b 1 ˙ 0 ˙ = if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
90 87 89 pm2.61i if E a = b 1 ˙ 0 ˙ = if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
91 iffalse ¬ a = c if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
92 90 91 eqtr4id ¬ a = c if E a = b 1 ˙ 0 ˙ = if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
93 83 92 pm2.61i if E a = b 1 ˙ 0 ˙ = if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
94 eqeq1 E d = E c E d = b E c = b
95 94 eqcoms E c = E d E d = b E c = b
96 95 ifbid E c = E d if E d = b 1 ˙ 0 ˙ = if E c = b 1 ˙ 0 ˙
97 96 ifeq1d E c = E d if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
98 97 ifeq2d E c = E d if a = c if E c = b 1 ˙ 0 ˙ if a = d if E d = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
99 93 98 syl5eq E c = E d if E a = b 1 ˙ 0 ˙ = if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
100 99 mpoeq3dv E c = E d a N , b N if E a = b 1 ˙ 0 ˙ = a N , b N if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
101 100 fveq2d E c = E d D a N , b N if E a = b 1 ˙ 0 ˙ = D a N , b N if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
102 79 101 syl φ E : N N c N d N E c = E d c d D a N , b N if E a = b 1 ˙ 0 ˙ = D a N , b N if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙
103 simpll φ E : N N c N d N E c = E d c d φ
104 simprll φ E : N N c N d N E c = E d c d c N
105 simprlr φ E : N N c N d N E c = E d c d d N
106 simprrr φ E : N N c N d N E c = E d c d c d
107 104 105 106 3jca φ E : N N c N d N E c = E d c d c N d N c d
108 3 5 ringidcl R Ring 1 ˙ K
109 9 108 syl φ 1 ˙ K
110 3 4 ring0cl R Ring 0 ˙ K
111 9 110 syl φ 0 ˙ K
112 109 111 ifcld φ if E c = b 1 ˙ 0 ˙ K
113 112 ad3antrrr φ E : N N c N d N E c = E d c d b N if E c = b 1 ˙ 0 ˙ K
114 simp1ll φ E : N N c N d N E c = E d c d a N b N φ
115 109 111 ifcld φ if E a = b 1 ˙ 0 ˙ K
116 114 115 syl φ E : N N c N d N E c = E d c d a N b N if E a = b 1 ˙ 0 ˙ K
117 1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116 mdetunilem2 φ E : N N c N d N E c = E d c d D a N , b N if a = c if E c = b 1 ˙ 0 ˙ if a = d if E c = b 1 ˙ 0 ˙ if E a = b 1 ˙ 0 ˙ = 0 ˙
118 102 117 eqtrd φ E : N N c N d N E c = E d c d D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
119 118 expr φ E : N N c N d N E c = E d c d D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
120 119 rexlimdvva φ E : N N c N d N E c = E d c d D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
121 78 120 sylbid φ E : N N ¬ E : N 1-1 N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙
122 62 121 pm2.61d φ E : N N D a N , b N if E a = b 1 ˙ 0 ˙ = 0 ˙