| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
|
| 2 |
|
mdetuni.b |
|
| 3 |
|
mdetuni.k |
|
| 4 |
|
mdetuni.0g |
|
| 5 |
|
mdetuni.1r |
|
| 6 |
|
mdetuni.pg |
|
| 7 |
|
mdetuni.tg |
|
| 8 |
|
mdetuni.n |
|
| 9 |
|
mdetuni.r |
|
| 10 |
|
mdetuni.ff |
|
| 11 |
|
mdetuni.al |
|
| 12 |
|
mdetuni.li |
|
| 13 |
|
mdetuni.sc |
|
| 14 |
|
mdetunilem8.id |
|
| 15 |
|
simpl |
|
| 16 |
|
enrefg |
|
| 17 |
8 16
|
syl |
|
| 18 |
|
f1finf1o |
|
| 19 |
17 8 18
|
syl2anc |
|
| 20 |
19
|
biimpa |
|
| 21 |
1
|
matring |
|
| 22 |
8 9 21
|
syl2anc |
|
| 23 |
|
eqid |
|
| 24 |
2 23
|
ringidcl |
|
| 25 |
22 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem7 |
|
| 28 |
15 20 26 27
|
syl3anc |
|
| 29 |
8
|
adantr |
|
| 30 |
29
|
3ad2ant1 |
|
| 31 |
9
|
adantr |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
simp1r |
|
| 34 |
|
f1f |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
simp2 |
|
| 37 |
35 36
|
ffvelcdmd |
|
| 38 |
|
simp3 |
|
| 39 |
1 5 4 30 32 37 38 23
|
mat1ov |
|
| 40 |
39
|
mpoeq3dva |
|
| 41 |
40
|
fveq2d |
|
| 42 |
14
|
adantr |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
zrhpsgnmhm |
|
| 45 |
9 8 44
|
syl2anc |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
47 3
|
mgpbas |
|
| 49 |
46 48
|
mhmf |
|
| 50 |
45 49
|
syl |
|
| 51 |
50
|
adantr |
|
| 52 |
|
eqid |
|
| 53 |
52 46
|
elsymgbas |
|
| 54 |
29 53
|
syl |
|
| 55 |
20 54
|
mpbird |
|
| 56 |
51 55
|
ffvelcdmd |
|
| 57 |
3 7 4
|
ringrz |
|
| 58 |
31 56 57
|
syl2anc |
|
| 59 |
43 58
|
eqtrd |
|
| 60 |
28 41 59
|
3eqtr3d |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
adantr |
|
| 63 |
|
dff13 |
|
| 64 |
|
ibar |
|
| 65 |
64
|
adantl |
|
| 66 |
63 65
|
bitr4id |
|
| 67 |
66
|
notbid |
|
| 68 |
|
rexnal |
|
| 69 |
|
rexnal |
|
| 70 |
|
df-ne |
|
| 71 |
70
|
anbi2i |
|
| 72 |
|
annim |
|
| 73 |
71 72
|
bitr2i |
|
| 74 |
73
|
rexbii |
|
| 75 |
69 74
|
bitr3i |
|
| 76 |
75
|
rexbii |
|
| 77 |
68 76
|
bitr3i |
|
| 78 |
67 77
|
bitrdi |
|
| 79 |
|
simprrl |
|
| 80 |
|
fveqeq2 |
|
| 81 |
80
|
ifbid |
|
| 82 |
|
iftrue |
|
| 83 |
81 82
|
eqtr4d |
|
| 84 |
|
fveqeq2 |
|
| 85 |
84
|
ifbid |
|
| 86 |
|
iftrue |
|
| 87 |
85 86
|
eqtr4d |
|
| 88 |
|
iffalse |
|
| 89 |
88
|
eqcomd |
|
| 90 |
87 89
|
pm2.61i |
|
| 91 |
|
iffalse |
|
| 92 |
90 91
|
eqtr4id |
|
| 93 |
83 92
|
pm2.61i |
|
| 94 |
|
eqeq1 |
|
| 95 |
94
|
eqcoms |
|
| 96 |
95
|
ifbid |
|
| 97 |
96
|
ifeq1d |
|
| 98 |
97
|
ifeq2d |
|
| 99 |
93 98
|
eqtrid |
|
| 100 |
99
|
mpoeq3dv |
|
| 101 |
100
|
fveq2d |
|
| 102 |
79 101
|
syl |
|
| 103 |
|
simpll |
|
| 104 |
|
simprll |
|
| 105 |
|
simprlr |
|
| 106 |
|
simprrr |
|
| 107 |
104 105 106
|
3jca |
|
| 108 |
3 5
|
ringidcl |
|
| 109 |
9 108
|
syl |
|
| 110 |
3 4
|
ring0cl |
|
| 111 |
9 110
|
syl |
|
| 112 |
109 111
|
ifcld |
|
| 113 |
112
|
ad3antrrr |
|
| 114 |
|
simp1ll |
|
| 115 |
109 111
|
ifcld |
|
| 116 |
114 115
|
syl |
|
| 117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116
|
mdetunilem2 |
|
| 118 |
102 117
|
eqtrd |
|
| 119 |
118
|
expr |
|
| 120 |
119
|
rexlimdvva |
|
| 121 |
78 120
|
sylbid |
|
| 122 |
62 121
|
pm2.61d |
|