Metamath Proof Explorer


Theorem mdi

Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdi A C B C C C A 𝑀 B C B C A B = C A B

Proof

Step Hyp Ref Expression
1 mdbr A C B C A 𝑀 B x C x B x A B = x A B
2 1 biimpd A C B C A 𝑀 B x C x B x A B = x A B
3 sseq1 x = C x B C B
4 oveq1 x = C x A = C A
5 4 ineq1d x = C x A B = C A B
6 oveq1 x = C x A B = C A B
7 5 6 eqeq12d x = C x A B = x A B C A B = C A B
8 3 7 imbi12d x = C x B x A B = x A B C B C A B = C A B
9 8 rspcv C C x C x B x A B = x A B C B C A B = C A B
10 2 9 sylan9 A C B C C C A 𝑀 B C B C A B = C A B
11 10 3impa A C B C C C A 𝑀 B C B C A B = C A B
12 11 imp32 A C B C C C A 𝑀 B C B C A B = C A B