Metamath Proof Explorer


Theorem mdiv

Description: A division law. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φ A
ldiv.b φ B
ldiv.c φ C
mdiv.an0 φ A 0
mdiv.bn0 φ B 0
Assertion mdiv φ A = C B B = C A

Proof

Step Hyp Ref Expression
1 ldiv.a φ A
2 ldiv.b φ B
3 ldiv.c φ C
4 mdiv.an0 φ A 0
5 mdiv.bn0 φ B 0
6 1 2 3 5 ldiv φ A B = C A = C B
7 1 2 3 4 rdiv φ A B = C B = C A
8 6 7 bitr3d φ A = C B B = C A