Metamath Proof Explorer


Theorem mdsl0

Description: A sublattice condition that transfers the modular pair property. Exercise 12 of Kalmbach p. 103. Also Lemma 1.5.3 of MaedaMaeda p. 2. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdsl0 A C B C C C D C C A D B A B = 0 A 𝑀 B C 𝑀 D

Proof

Step Hyp Ref Expression
1 sstr2 x D D B x B
2 1 com12 D B x D x B
3 2 ad2antlr C A D B A B = 0 x D x B
4 3 ad2antlr A C B C C C D C C A D B A B = 0 x C x D x B
5 chlej2 C C A C x C C A x C x A
6 ss2in x C x A D B x C D x A B
7 6 ex x C x A D B x C D x A B
8 5 7 syl C C A C x C C A D B x C D x A B
9 8 ex C C A C x C C A D B x C D x A B
10 9 3expia C C A C x C C A D B x C D x A B
11 10 ancoms A C C C x C C A D B x C D x A B
12 11 ad2ant2r A C B C C C D C x C C A D B x C D x A B
13 12 imp43 A C B C C C D C x C C A D B x C D x A B
14 13 adantrr A C B C C C D C x C C A D B A B = 0 x C D x A B
15 oveq2 A B = 0 x A B = x 0
16 chj0 x C x 0 = x
17 15 16 sylan9eqr x C A B = 0 x A B = x
18 17 adantl C C D C x C A B = 0 x A B = x
19 chincl C C D C C D C
20 chub1 x C C D C x x C D
21 20 ancoms C D C x C x x C D
22 19 21 sylan C C D C x C x x C D
23 22 adantrr C C D C x C A B = 0 x x C D
24 18 23 eqsstrd C C D C x C A B = 0 x A B x C D
25 24 adantll A C B C C C D C x C A B = 0 x A B x C D
26 25 anassrs A C B C C C D C x C A B = 0 x A B x C D
27 26 adantrl A C B C C C D C x C C A D B A B = 0 x A B x C D
28 sstr2 x C D x A B x A B x A B x C D x A B
29 sstr2 x C D x A B x A B x C D x C D x C D
30 28 29 syl6 x C D x A B x A B x A B x A B x C D x C D x C D
31 30 com23 x C D x A B x A B x C D x A B x A B x C D x C D
32 14 27 31 sylc A C B C C C D C x C C A D B A B = 0 x A B x A B x C D x C D
33 32 an32s A C B C C C D C C A D B A B = 0 x C x A B x A B x C D x C D
34 4 33 imim12d A C B C C C D C C A D B A B = 0 x C x B x A B x A B x D x C D x C D
35 34 ralimdva A C B C C C D C C A D B A B = 0 x C x B x A B x A B x C x D x C D x C D
36 mdbr2 A C B C A 𝑀 B x C x B x A B x A B
37 36 ad2antrr A C B C C C D C C A D B A B = 0 A 𝑀 B x C x B x A B x A B
38 mdbr2 C C D C C 𝑀 D x C x D x C D x C D
39 38 ad2antlr A C B C C C D C C A D B A B = 0 C 𝑀 D x C x D x C D x C D
40 35 37 39 3imtr4d A C B C C C D C C A D B A B = 0 A 𝑀 B C 𝑀 D
41 40 expimpd A C B C C C D C C A D B A B = 0 A 𝑀 B C 𝑀 D