Metamath Proof Explorer


Theorem mdsl2i

Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of MaedaMaeda p. 2. (Contributed by NM, 28-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 A C
mdsl.2 B C
Assertion mdsl2i A 𝑀 B x C A B x x B x A B x A B

Proof

Step Hyp Ref Expression
1 mdsl.1 A C
2 mdsl.2 B C
3 chub1 x C A C x x A
4 1 3 mpan2 x C x x A
5 iba x B x x A x x A x B
6 ssin x x A x B x x A B
7 5 6 bitrdi x B x x A x x A B
8 4 7 syl5ibcom x C x B x x A B
9 chub2 A C x C A x A
10 1 9 mpan x C A x A
11 10 ssrind x C A B x A B
12 8 11 jctird x C x B x x A B A B x A B
13 chjcl x C A C x A C
14 1 13 mpan2 x C x A C
15 chincl x A C B C x A B C
16 2 15 mpan2 x A C x A B C
17 14 16 syl x C x A B C
18 1 2 chincli A B C
19 chlub x C A B C x A B C x x A B A B x A B x A B x A B
20 18 19 mp3an2 x C x A B C x x A B A B x A B x A B x A B
21 17 20 mpdan x C x x A B A B x A B x A B x A B
22 12 21 sylibd x C x B x A B x A B
23 eqss x A B = x A B x A B x A B x A B x A B
24 23 rbaib x A B x A B x A B = x A B x A B x A B
25 22 24 syl6 x C x B x A B = x A B x A B x A B
26 25 adantld x C A B x x B x A B = x A B x A B x A B
27 26 pm5.74d x C A B x x B x A B = x A B A B x x B x A B x A B
28 2 1 chub2i B A B
29 sstr x B B A B x A B
30 28 29 mpan2 x B x A B
31 30 pm4.71ri x B x A B x B
32 31 anbi2i A B x x B A B x x A B x B
33 anass A B x x A B x B A B x x A B x B
34 32 33 bitr4i A B x x B A B x x A B x B
35 34 imbi1i A B x x B x A B = x A B A B x x A B x B x A B = x A B
36 27 35 bitr3di x C A B x x B x A B x A B A B x x A B x B x A B = x A B
37 impexp A B x x A B x B x A B = x A B A B x x A B x B x A B = x A B
38 36 37 bitrdi x C A B x x B x A B x A B A B x x A B x B x A B = x A B
39 38 ralbiia x C A B x x B x A B x A B x C A B x x A B x B x A B = x A B
40 1 2 mdsl1i x C A B x x A B x B x A B = x A B A 𝑀 B
41 39 40 bitr2i A 𝑀 B x C A B x x B x A B x A B