Metamath Proof Explorer


Theorem mdsl3

Description: Sublattice mapping for a modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mdsl3 A C B C C C A 𝑀 B A B C C B C A B = C

Proof

Step Hyp Ref Expression
1 mdi A C B C C C A 𝑀 B C B C A B = C A B
2 1 3adantr2 A C B C C C A 𝑀 B A B C C B C A B = C A B
3 chincl A C B C A B C
4 chlejb2 A B C C C A B C C A B = C
5 3 4 stoic3 A C B C C C A B C C A B = C
6 5 biimpa A C B C C C A B C C A B = C
7 6 3ad2antr2 A C B C C C A 𝑀 B A B C C B C A B = C
8 2 7 eqtrd A C B C C C A 𝑀 B A B C C B C A B = C