Metamath Proof Explorer


Theorem mdsldmd1i

Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
Assertion mdsldmd1i A 𝑀 B B 𝑀 * A A C D C D A B C 𝑀 * D C B 𝑀 * D B

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 mddmd A C B C A 𝑀 B A 𝑀 * B
6 1 2 5 mp2an A 𝑀 B A 𝑀 * B
7 dmdmd B C A C B 𝑀 * A B 𝑀 A
8 2 1 7 mp2an B 𝑀 * A B 𝑀 A
9 6 8 anbi12ci A 𝑀 B B 𝑀 * A B 𝑀 A A 𝑀 * B
10 3 4 chincli C D C
11 1 10 chsscon3i A C D C D A
12 3 4 chdmm1i C D = C D
13 12 sseq1i C D A C D A
14 11 13 bitri A C D C D A
15 3 4 chjcli C D C
16 1 2 chjcli A B C
17 15 16 chsscon3i C D A B A B C D
18 1 2 chdmj1i A B = A B
19 incom A B = B A
20 18 19 eqtri A B = B A
21 3 4 chdmj1i C D = C D
22 20 21 sseq12i A B C D B A C D
23 17 22 bitri C D A B B A C D
24 14 23 anbi12ci A C D C D A B B A C D C D A
25 2 choccli B C
26 1 choccli A C
27 3 choccli C C
28 4 choccli D C
29 25 26 27 28 mdslmd2i B 𝑀 A A 𝑀 * B B A C D C D A C 𝑀 D C B 𝑀 D B
30 9 24 29 syl2anb A 𝑀 B B 𝑀 * A A C D C D A B C 𝑀 D C B 𝑀 D B
31 dmdmd C C D C C 𝑀 * D C 𝑀 D
32 3 4 31 mp2an C 𝑀 * D C 𝑀 D
33 3 2 chincli C B C
34 4 2 chincli D B C
35 dmdmd C B C D B C C B 𝑀 * D B C B 𝑀 D B
36 33 34 35 mp2an C B 𝑀 * D B C B 𝑀 D B
37 3 2 chdmm1i C B = C B
38 4 2 chdmm1i D B = D B
39 37 38 breq12i C B 𝑀 D B C B 𝑀 D B
40 36 39 bitri C B 𝑀 * D B C B 𝑀 D B
41 30 32 40 3bitr4g A 𝑀 B B 𝑀 * A A C D C D A B C 𝑀 * D C B 𝑀 * D B