Metamath Proof Explorer


Theorem mdslj1i

Description: Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 A C
mdslle1.2 B C
mdslle1.3 C C
mdslle1.4 D C
Assertion mdslj1i A 𝑀 B B 𝑀 * A A C D C D A B C D B = C B D B

Proof

Step Hyp Ref Expression
1 mdslle1.1 A C
2 mdslle1.2 B C
3 mdslle1.3 C C
4 mdslle1.4 D C
5 ssin A C A D A C D
6 5 bicomi A C D A C A D
7 1 2 chjcli A B C
8 3 4 7 chlubi C A B D A B C D A B
9 8 bicomi C D A B C A B D A B
10 6 9 anbi12i A C D C D A B A C A D C A B D A B
11 simpr A 𝑀 B B 𝑀 * A B 𝑀 * A
12 simpl A C A D A C
13 simpl C A B D A B C A B
14 1 2 3 3pm3.2i A C B C C C
15 dmdsl3 A C B C C C B 𝑀 * A A C C A B C B A = C
16 14 15 mpan B 𝑀 * A A C C A B C B A = C
17 11 12 13 16 syl3an A 𝑀 B B 𝑀 * A A C A D C A B D A B C B A = C
18 3 2 chincli C B C
19 4 2 chincli D B C
20 18 19 chub1i C B C B D B
21 18 19 chjcli C B D B C
22 18 21 1 chlej1i C B C B D B C B A C B D B A
23 20 22 mp1i A 𝑀 B B 𝑀 * A A C A D C A B D A B C B A C B D B A
24 17 23 eqsstrrd A 𝑀 B B 𝑀 * A A C A D C A B D A B C C B D B A
25 simpr A C A D A D
26 simpr C A B D A B D A B
27 1 2 4 3pm3.2i A C B C D C
28 dmdsl3 A C B C D C B 𝑀 * A A D D A B D B A = D
29 27 28 mpan B 𝑀 * A A D D A B D B A = D
30 11 25 26 29 syl3an A 𝑀 B B 𝑀 * A A C A D C A B D A B D B A = D
31 19 18 chub2i D B C B D B
32 19 21 1 chlej1i D B C B D B D B A C B D B A
33 31 32 mp1i A 𝑀 B B 𝑀 * A A C A D C A B D A B D B A C B D B A
34 30 33 eqsstrrd A 𝑀 B B 𝑀 * A A C A D C A B D A B D C B D B A
35 24 34 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C C B D B A D C B D B A
36 21 1 chjcli C B D B A C
37 3 4 36 chlubi C C B D B A D C B D B A C D C B D B A
38 35 37 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C D C B D B A
39 38 ssrind A 𝑀 B B 𝑀 * A A C A D C A B D A B C D B C B D B A B
40 simpl A 𝑀 B B 𝑀 * A A 𝑀 B
41 ssrin A C A B C B
42 41 20 sstrdi A C A B C B D B
43 42 adantr A C A D A B C B D B
44 inss2 C B B
45 inss2 D B B
46 18 19 2 chlubi C B B D B B C B D B B
47 46 bicomi C B D B B C B B D B B
48 44 45 47 mpbir2an C B D B B
49 48 a1i C A B D A B C B D B B
50 1 2 21 3pm3.2i A C B C C B D B C
51 mdsl3 A C B C C B D B C A 𝑀 B A B C B D B C B D B B C B D B A B = C B D B
52 50 51 mpan A 𝑀 B A B C B D B C B D B B C B D B A B = C B D B
53 40 43 49 52 syl3an A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B A B = C B D B
54 39 53 sseqtrd A 𝑀 B B 𝑀 * A A C A D C A B D A B C D B C B D B
55 54 3expb A 𝑀 B B 𝑀 * A A C A D C A B D A B C D B C B D B
56 10 55 sylan2b A 𝑀 B B 𝑀 * A A C D C D A B C D B C B D B
57 3 4 2 lediri C B D B C D B
58 57 a1i A 𝑀 B B 𝑀 * A A C D C D A B C B D B C D B
59 56 58 eqssd A 𝑀 B B 𝑀 * A A C D C D A B C D B = C B D B