Metamath Proof Explorer


Theorem mdslj2i

Description: Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 A C
mdslle1.2 B C
mdslle1.3 C C
mdslle1.4 D C
Assertion mdslj2i A 𝑀 B B 𝑀 * A A B C D C D B C D A = C A D A

Proof

Step Hyp Ref Expression
1 mdslle1.1 A C
2 mdslle1.2 B C
3 mdslle1.3 C C
4 mdslle1.4 D C
5 3 4 1 lejdiri C D A C A D A
6 5 a1i A 𝑀 B B 𝑀 * A A B C D C D B C D A C A D A
7 ssin A B C A B D A B C D
8 7 bicomi A B C D A B C A B D
9 3 4 2 chlubi C B D B C D B
10 9 bicomi C D B C B D B
11 8 10 anbi12i A B C D C D B A B C A B D C B D B
12 simpr A 𝑀 B B 𝑀 * A B 𝑀 * A
13 1 3 chub2i A C A
14 1 4 chub2i A D A
15 13 14 ssini A C A D A
16 15 a1i A B C A B D A C A D A
17 3 2 1 chlej1i C B C A B A
18 2 1 chjcomi B A = A B
19 17 18 sseqtrdi C B C A A B
20 ssinss1 C A A B C A D A A B
21 19 20 syl C B C A D A A B
22 21 adantr C B D B C A D A A B
23 3 1 chjcli C A C
24 4 1 chjcli D A C
25 23 24 chincli C A D A C
26 1 2 25 3pm3.2i A C B C C A D A C
27 dmdsl3 A C B C C A D A C B 𝑀 * A A C A D A C A D A A B C A D A B A = C A D A
28 26 27 mpan B 𝑀 * A A C A D A C A D A A B C A D A B A = C A D A
29 12 16 22 28 syl3an A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A B A = C A D A
30 inss1 C A D A C A
31 ssrin C A D A C A C A D A B C A B
32 30 31 ax-mp C A D A B C A B
33 simpl A 𝑀 B B 𝑀 * A A 𝑀 B
34 simpl A B C A B D A B C
35 simpl C B D B C B
36 1 2 3 3pm3.2i A C B C C C
37 mdsl3 A C B C C C A 𝑀 B A B C C B C A B = C
38 36 37 mpan A 𝑀 B A B C C B C A B = C
39 33 34 35 38 syl3an A 𝑀 B B 𝑀 * A A B C A B D C B D B C A B = C
40 32 39 sseqtrid A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A B C
41 inss2 C A D A D A
42 ssrin C A D A D A C A D A B D A B
43 41 42 ax-mp C A D A B D A B
44 simpr A B C A B D A B D
45 simpr C B D B D B
46 1 2 4 3pm3.2i A C B C D C
47 mdsl3 A C B C D C A 𝑀 B A B D D B D A B = D
48 46 47 mpan A 𝑀 B A B D D B D A B = D
49 33 44 45 48 syl3an A 𝑀 B B 𝑀 * A A B C A B D C B D B D A B = D
50 43 49 sseqtrid A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A B D
51 40 50 ssind A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A B C D
52 25 2 chincli C A D A B C
53 3 4 chincli C D C
54 52 53 1 chlej1i C A D A B C D C A D A B A C D A
55 51 54 syl A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A B A C D A
56 29 55 eqsstrrd A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A C D A
57 56 3expb A 𝑀 B B 𝑀 * A A B C A B D C B D B C A D A C D A
58 11 57 sylan2b A 𝑀 B B 𝑀 * A A B C D C D B C A D A C D A
59 6 58 eqssd A 𝑀 B B 𝑀 * A A B C D C D B C D A = C A D A