Metamath Proof Explorer


Theorem mdslle1i

Description: Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 A C
mdslle1.2 B C
mdslle1.3 C C
mdslle1.4 D C
Assertion mdslle1i B 𝑀 * A A C D C D A B C D C B D B

Proof

Step Hyp Ref Expression
1 mdslle1.1 A C
2 mdslle1.2 B C
3 mdslle1.3 C C
4 mdslle1.4 D C
5 ssrin C D C B D B
6 3 2 chincli C B C
7 4 2 chincli D B C
8 6 7 1 chlej1i C B D B C B A D B A
9 id B 𝑀 * A B 𝑀 * A
10 ssin A C A D A C D
11 10 bicomi A C D A C A D
12 11 simplbi A C D A C
13 1 2 chjcli A B C
14 3 4 13 chlubi C A B D A B C D A B
15 14 bicomi C D A B C A B D A B
16 15 simplbi C D A B C A B
17 1 2 3 3pm3.2i A C B C C C
18 dmdsl3 A C B C C C B 𝑀 * A A C C A B C B A = C
19 17 18 mpan B 𝑀 * A A C C A B C B A = C
20 9 12 16 19 syl3an B 𝑀 * A A C D C D A B C B A = C
21 11 simprbi A C D A D
22 15 simprbi C D A B D A B
23 1 2 4 3pm3.2i A C B C D C
24 dmdsl3 A C B C D C B 𝑀 * A A D D A B D B A = D
25 23 24 mpan B 𝑀 * A A D D A B D B A = D
26 9 21 22 25 syl3an B 𝑀 * A A C D C D A B D B A = D
27 20 26 sseq12d B 𝑀 * A A C D C D A B C B A D B A C D
28 8 27 syl5ib B 𝑀 * A A C D C D A B C B D B C D
29 5 28 impbid2 B 𝑀 * A A C D C D A B C D C B D B