Metamath Proof Explorer


Theorem mdslle2i

Description: Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 A C
mdslle1.2 B C
mdslle1.3 C C
mdslle1.4 D C
Assertion mdslle2i A 𝑀 B A B C D C D B C D C A D A

Proof

Step Hyp Ref Expression
1 mdslle1.1 A C
2 mdslle1.2 B C
3 mdslle1.3 C C
4 mdslle1.4 D C
5 3 4 1 chlej1i C D C A D A
6 ssrin C A D A C A B D A B
7 id A 𝑀 B A 𝑀 B
8 ssin A B C A B D A B C D
9 8 bicomi A B C D A B C A B D
10 9 simplbi A B C D A B C
11 3 4 2 chlubi C B D B C D B
12 11 bicomi C D B C B D B
13 12 simplbi C D B C B
14 1 2 3 3pm3.2i A C B C C C
15 mdsl3 A C B C C C A 𝑀 B A B C C B C A B = C
16 14 15 mpan A 𝑀 B A B C C B C A B = C
17 7 10 13 16 syl3an A 𝑀 B A B C D C D B C A B = C
18 9 simprbi A B C D A B D
19 12 simprbi C D B D B
20 1 2 4 3pm3.2i A C B C D C
21 mdsl3 A C B C D C A 𝑀 B A B D D B D A B = D
22 20 21 mpan A 𝑀 B A B D D B D A B = D
23 7 18 19 22 syl3an A 𝑀 B A B C D C D B D A B = D
24 17 23 sseq12d A 𝑀 B A B C D C D B C A B D A B C D
25 6 24 syl5ib A 𝑀 B A B C D C D B C A D A C D
26 5 25 impbid2 A 𝑀 B A B C D C D B C D C A D A